gabrielaltay
commited on
Commit
•
90d8750
1
Parent(s):
eefbc1f
upload hubscripts/mirna_hub.py to hub from bigbio repo
Browse files
mirna.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import xml.etree.ElementTree as ET
|
16 |
+
from typing import Dict, Iterator, List, Tuple
|
17 |
+
|
18 |
+
import datasets
|
19 |
+
|
20 |
+
from .bigbiohub import kb_features
|
21 |
+
from .bigbiohub import BigBioConfig
|
22 |
+
from .bigbiohub import Tasks
|
23 |
+
|
24 |
+
_LANGUAGES = ['English']
|
25 |
+
_PUBMED = True
|
26 |
+
_LOCAL = False
|
27 |
+
_CITATION = """\
|
28 |
+
@Article{Bagewadi2014,
|
29 |
+
author={Bagewadi, Shweta
|
30 |
+
and Bobi{\'{c}}, Tamara
|
31 |
+
and Hofmann-Apitius, Martin
|
32 |
+
and Fluck, Juliane
|
33 |
+
and Klinger, Roman},
|
34 |
+
title={Detecting miRNA Mentions and Relations in Biomedical Literature},
|
35 |
+
journal={F1000Research},
|
36 |
+
year={2014},
|
37 |
+
month={Aug},
|
38 |
+
day={28},
|
39 |
+
publisher={F1000Research},
|
40 |
+
volume={3},
|
41 |
+
pages={205-205},
|
42 |
+
keywords={MicroRNAs; corpus; prediction algorithms},
|
43 |
+
abstract={
|
44 |
+
INTRODUCTION: MicroRNAs (miRNAs) have demonstrated their potential as post-transcriptional
|
45 |
+
gene expression regulators, participating in a wide spectrum of regulatory events such as
|
46 |
+
apoptosis, differentiation, and stress response. Apart from the role of miRNAs in normal
|
47 |
+
physiology, their dysregulation is implicated in a vast array of diseases. Dissection of
|
48 |
+
miRNA-related associations are valuable for contemplating their mechanism in diseases,
|
49 |
+
leading to the discovery of novel miRNAs for disease prognosis, diagnosis, and therapy.
|
50 |
+
MOTIVATION: Apart from databases and prediction tools, miRNA-related information is largely
|
51 |
+
available as unstructured text. Manual retrieval of these associations can be labor-intensive
|
52 |
+
due to steadily growing number of publications. Additionally, most of the published miRNA
|
53 |
+
entity recognition methods are keyword based, further subjected to manual inspection for
|
54 |
+
retrieval of relations. Despite the fact that several databases host miRNA-associations
|
55 |
+
derived from text, lower sensitivity and lack of published details for miRNA entity
|
56 |
+
recognition and associated relations identification has motivated the need for developing
|
57 |
+
comprehensive methods that are freely available for the scientific community. Additionally,
|
58 |
+
the lack of a standard corpus for miRNA-relations has caused difficulty in evaluating the
|
59 |
+
available systems. We propose methods to automatically extract mentions of miRNAs, species,
|
60 |
+
genes/proteins, disease, and relations from scientific literature. Our generated corpora,
|
61 |
+
along with dictionaries, and miRNA regular expression are freely available for academic
|
62 |
+
purposes. To our knowledge, these resources are the most comprehensive developed so far.
|
63 |
+
RESULTS: The identification of specific miRNA mentions reaches a recall of 0.94 and
|
64 |
+
precision of 0.93. Extraction of miRNA-disease and miRNA-gene relations lead to an
|
65 |
+
F1 score of up to 0.76. A comparison of the information extracted by our approach to
|
66 |
+
the databases miR2Disease and miRSel for the extraction of Alzheimer's disease
|
67 |
+
related relations shows the capability of our proposed methods in identifying correct
|
68 |
+
relations with improved sensitivity. The published resources and described methods can
|
69 |
+
help the researchers for maximal retrieval of miRNA-relations and generation of
|
70 |
+
miRNA-regulatory networks. AVAILABILITY: The training and test corpora, annotation
|
71 |
+
guidelines, developed dictionaries, and supplementary files are available at
|
72 |
+
http://www.scai.fraunhofer.de/mirna-corpora.html.
|
73 |
+
},
|
74 |
+
note={26535109[pmid]},
|
75 |
+
note={PMC4602280[pmcid]},
|
76 |
+
issn={2046-1402},
|
77 |
+
url={https://pubmed.ncbi.nlm.nih.gov/26535109},
|
78 |
+
language={eng}
|
79 |
+
}
|
80 |
+
"""
|
81 |
+
|
82 |
+
_DATASETNAME = "mirna"
|
83 |
+
_DISPLAYNAME = "miRNA"
|
84 |
+
|
85 |
+
_DESCRIPTION = """\
|
86 |
+
The corpus consists of 301 Medline citations. The documents were screened for
|
87 |
+
mentions of miRNA in the abstract text. Gene, disease and miRNA entities were manually
|
88 |
+
annotated. The corpus comprises of two separate files, a train and a test set, coming
|
89 |
+
from 201 and 100 documents respectively.
|
90 |
+
"""
|
91 |
+
|
92 |
+
_HOMEPAGE = "https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads/download-mirna-test-corpus.html"
|
93 |
+
|
94 |
+
_LICENSE = 'Creative Commons Attribution Non Commercial 3.0 Unported'
|
95 |
+
|
96 |
+
_BASE = "https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/miRNA/miRNA-"
|
97 |
+
|
98 |
+
_URLs = {
|
99 |
+
"source": {
|
100 |
+
"train": _BASE + "Train-Corpus.xml",
|
101 |
+
"test": _BASE + "Test-Corpus.xml",
|
102 |
+
},
|
103 |
+
"bigbio_kb": {
|
104 |
+
"train": _BASE + "Train-Corpus.xml",
|
105 |
+
"test": _BASE + "Test-Corpus.xml",
|
106 |
+
},
|
107 |
+
}
|
108 |
+
|
109 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
110 |
+
_SOURCE_VERSION = "1.0.0"
|
111 |
+
_BIGBIO_VERSION = "1.0.0"
|
112 |
+
|
113 |
+
|
114 |
+
class miRNADataset(datasets.GeneratorBasedBuilder):
|
115 |
+
"""mirna"""
|
116 |
+
|
117 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
118 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
119 |
+
|
120 |
+
BUILDER_CONFIGS = [
|
121 |
+
BigBioConfig(
|
122 |
+
name="mirna_source",
|
123 |
+
version=SOURCE_VERSION,
|
124 |
+
description="mirna source schema",
|
125 |
+
schema="source",
|
126 |
+
subset_id="mirna",
|
127 |
+
),
|
128 |
+
BigBioConfig(
|
129 |
+
name="mirna_bigbio_kb",
|
130 |
+
version=BIGBIO_VERSION,
|
131 |
+
description="mirna BigBio schema",
|
132 |
+
schema="bigbio_kb",
|
133 |
+
subset_id="mirna",
|
134 |
+
),
|
135 |
+
]
|
136 |
+
|
137 |
+
DEFAULT_CONFIG_NAME = "mirna_source"
|
138 |
+
|
139 |
+
def _info(self):
|
140 |
+
|
141 |
+
if self.config.schema == "source":
|
142 |
+
|
143 |
+
features = datasets.Features(
|
144 |
+
{
|
145 |
+
"passages": [
|
146 |
+
{
|
147 |
+
"document_id": datasets.Value("string"),
|
148 |
+
"type": datasets.Value("string"),
|
149 |
+
"text": datasets.Value("string"),
|
150 |
+
"offset": datasets.Value("int32"),
|
151 |
+
"entities": [
|
152 |
+
{
|
153 |
+
"id": datasets.Value("string"),
|
154 |
+
"offsets": [[datasets.Value("int32")]],
|
155 |
+
"text": [datasets.Value("string")],
|
156 |
+
"type": datasets.Value("string"),
|
157 |
+
"normalized": [
|
158 |
+
{
|
159 |
+
"db_name": datasets.Value("string"),
|
160 |
+
"db_id": datasets.Value("string"),
|
161 |
+
}
|
162 |
+
],
|
163 |
+
}
|
164 |
+
],
|
165 |
+
}
|
166 |
+
]
|
167 |
+
}
|
168 |
+
)
|
169 |
+
|
170 |
+
elif self.config.schema == "bigbio_kb":
|
171 |
+
features = kb_features
|
172 |
+
|
173 |
+
return datasets.DatasetInfo(
|
174 |
+
description=_DESCRIPTION,
|
175 |
+
features=features,
|
176 |
+
supervised_keys=None,
|
177 |
+
homepage=_HOMEPAGE,
|
178 |
+
license=str(_LICENSE),
|
179 |
+
citation=_CITATION,
|
180 |
+
)
|
181 |
+
|
182 |
+
def _split_generators(self, dl_manager):
|
183 |
+
"""Returns SplitGenerators."""
|
184 |
+
|
185 |
+
my_urls = _URLs[self.config.schema]
|
186 |
+
|
187 |
+
path_xml_train = dl_manager.download(my_urls["train"])
|
188 |
+
path_xml_test = dl_manager.download(my_urls["test"])
|
189 |
+
|
190 |
+
return [
|
191 |
+
datasets.SplitGenerator(
|
192 |
+
name=datasets.Split.TRAIN,
|
193 |
+
# These kwargs will be passed to _generate_examples
|
194 |
+
gen_kwargs={
|
195 |
+
"filepath": path_xml_train,
|
196 |
+
"split": "train",
|
197 |
+
},
|
198 |
+
),
|
199 |
+
datasets.SplitGenerator(
|
200 |
+
name=datasets.Split.TEST,
|
201 |
+
# These kwargs will be passed to _generate_examples
|
202 |
+
gen_kwargs={
|
203 |
+
"filepath": path_xml_test,
|
204 |
+
"split": "test",
|
205 |
+
},
|
206 |
+
),
|
207 |
+
]
|
208 |
+
|
209 |
+
def _get_passages_and_entities(self, d) -> Tuple[List[Dict], List[List[Dict]]]:
|
210 |
+
|
211 |
+
sentences: List[Dict] = []
|
212 |
+
entities: List[List[Dict]] = []
|
213 |
+
relations: List[List[Dict]] = []
|
214 |
+
|
215 |
+
text_total_length = 0
|
216 |
+
|
217 |
+
po_start = 0
|
218 |
+
|
219 |
+
# Get sentences of the document
|
220 |
+
for _, s in enumerate(d):
|
221 |
+
|
222 |
+
# annotation used only for document indexing
|
223 |
+
if s.attrib["text"] is None or len(s.attrib["text"]) <= 0:
|
224 |
+
continue
|
225 |
+
|
226 |
+
# annotation used only for document indexing
|
227 |
+
if len(s) <= 0:
|
228 |
+
continue
|
229 |
+
|
230 |
+
text_total_length += len(s.attrib["text"]) + 1
|
231 |
+
|
232 |
+
po_end = po_start + len(s.attrib["text"])
|
233 |
+
|
234 |
+
start = po_start
|
235 |
+
|
236 |
+
dp = {
|
237 |
+
"text": s.attrib["text"],
|
238 |
+
"type": "title" if ".s0" in s.attrib["id"] else "abstract",
|
239 |
+
"offsets": [(po_start, po_end)],
|
240 |
+
"offset": 0, # original offset
|
241 |
+
}
|
242 |
+
|
243 |
+
po_start = po_end + 1
|
244 |
+
|
245 |
+
sentences.append(dp)
|
246 |
+
|
247 |
+
pe = [] # entities
|
248 |
+
re = [] # relations
|
249 |
+
|
250 |
+
# For each entity
|
251 |
+
for a in s:
|
252 |
+
|
253 |
+
# If correspond to a entity
|
254 |
+
if a.tag == "entity":
|
255 |
+
|
256 |
+
length = len(a.attrib["text"])
|
257 |
+
|
258 |
+
if a.attrib["text"] is None or length <= 0:
|
259 |
+
continue
|
260 |
+
|
261 |
+
# no in-text annotation: only for document indexing
|
262 |
+
if a.attrib["type"] in ["MeSH_Indexing_Chemical", "OTHER"]:
|
263 |
+
continue
|
264 |
+
|
265 |
+
startOffset, endOffset = a.attrib["charOffset"].split("-")
|
266 |
+
startOffset, endOffset = int(startOffset), int(endOffset)
|
267 |
+
|
268 |
+
pe.append(
|
269 |
+
{
|
270 |
+
"id": a.attrib["id"],
|
271 |
+
"type": a.attrib["type"],
|
272 |
+
"text": (a.attrib["text"],),
|
273 |
+
"offsets": [(start + startOffset, start + endOffset + 1)],
|
274 |
+
"normalized": [
|
275 |
+
{"db_name": "miRNA-corpus", "db_id": a.attrib["id"]}
|
276 |
+
],
|
277 |
+
}
|
278 |
+
)
|
279 |
+
|
280 |
+
# If correspond to relation pair
|
281 |
+
elif a.tag == "pair":
|
282 |
+
|
283 |
+
re.append(
|
284 |
+
{
|
285 |
+
"id": a.attrib["id"],
|
286 |
+
"type": a.attrib["type"],
|
287 |
+
"arg1_id": a.attrib["e1"],
|
288 |
+
"arg2_id": a.attrib["e2"],
|
289 |
+
"normalized": [],
|
290 |
+
}
|
291 |
+
)
|
292 |
+
|
293 |
+
entities.append(pe)
|
294 |
+
relations.append(re)
|
295 |
+
|
296 |
+
return sentences, entities, relations
|
297 |
+
|
298 |
+
def _generate_examples(
|
299 |
+
self,
|
300 |
+
filepath: str,
|
301 |
+
split: str,
|
302 |
+
) -> Iterator[Tuple[int, Dict]]:
|
303 |
+
"""Yields examples as (key, example) tuples."""
|
304 |
+
|
305 |
+
reader = ET.fromstring(open(str(filepath), "r").read())
|
306 |
+
|
307 |
+
if self.config.schema == "source":
|
308 |
+
|
309 |
+
for uid, doc in enumerate(reader):
|
310 |
+
|
311 |
+
(
|
312 |
+
sentences,
|
313 |
+
sentences_entities,
|
314 |
+
relations,
|
315 |
+
) = self._get_passages_and_entities(doc)
|
316 |
+
|
317 |
+
if (
|
318 |
+
len(sentences) < 1
|
319 |
+
or len(sentences_entities) < 1
|
320 |
+
or len(sentences_entities) != len(sentences)
|
321 |
+
):
|
322 |
+
continue
|
323 |
+
|
324 |
+
for p, pe, re in zip(sentences, sentences_entities, relations):
|
325 |
+
|
326 |
+
p.pop("offsets") # BioC has only start for passages offsets
|
327 |
+
|
328 |
+
p["document_id"] = doc.attrib["id"]
|
329 |
+
p["entities"] = pe # BioC has per passage entities
|
330 |
+
|
331 |
+
yield uid, {"passages": sentences}
|
332 |
+
|
333 |
+
elif self.config.schema == "bigbio_kb":
|
334 |
+
|
335 |
+
uid = 0
|
336 |
+
|
337 |
+
for idx, doc in enumerate(reader):
|
338 |
+
|
339 |
+
(
|
340 |
+
sentences,
|
341 |
+
sentences_entities,
|
342 |
+
relations,
|
343 |
+
) = self._get_passages_and_entities(doc)
|
344 |
+
|
345 |
+
if (
|
346 |
+
len(sentences) < 1
|
347 |
+
or len(sentences_entities) < 1
|
348 |
+
or len(sentences_entities) != len(sentences)
|
349 |
+
):
|
350 |
+
continue
|
351 |
+
|
352 |
+
# global id
|
353 |
+
uid += 1
|
354 |
+
|
355 |
+
# unpack per-sentence entities
|
356 |
+
entities = [e for pe in sentences_entities for e in pe]
|
357 |
+
|
358 |
+
for p in sentences:
|
359 |
+
p.pop("offset") # drop original offset
|
360 |
+
p["text"] = (p["text"],) # text in sentence is Sequence
|
361 |
+
p["id"] = uid
|
362 |
+
uid += 1
|
363 |
+
|
364 |
+
for e in entities:
|
365 |
+
e["id"] = uid
|
366 |
+
uid += 1
|
367 |
+
|
368 |
+
# unpack per-sentence relations
|
369 |
+
relations = [r for re in relations for r in re]
|
370 |
+
|
371 |
+
for r in relations:
|
372 |
+
r["id"] = uid
|
373 |
+
uid += 1
|
374 |
+
|
375 |
+
yield idx, {
|
376 |
+
"id": uid,
|
377 |
+
"document_id": doc.attrib["id"],
|
378 |
+
"passages": sentences,
|
379 |
+
"entities": entities,
|
380 |
+
"events": [],
|
381 |
+
"coreferences": [],
|
382 |
+
"relations": relations,
|
383 |
+
}
|