File size: 5,965 Bytes
98092f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of
the question prepared by medical professional.
"""
import csv
import os
from typing import Dict, Tuple
import datasets
from datasets import load_dataset
from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
author = {Krallinger, M., Rabal, O., Lourenço, A.},
title = {Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs},
journal = {KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining},
volume = {3458–3465},
year = {2020},
url = {https://github.com/curai/medical-question-pair-dataset},
doi = {},
biburl = {},
bibsource = {}
}
"""
_DATASETNAME = "mqp"
_DISPLAYNAME = "MQP"
_DESCRIPTION = """\
Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of
the question prepared by medical professional. Paraphrased versions were labelled as similar (syntactically dissimilar
but contextually similar ) or dissimilar (syntactically may look similar but contextually dissimilar). Labels 1: similar, 0: dissimilar
"""
_HOMEPAGE = "https://github.com/curai/medical-question-pair-dataset"
_LICENSE = 'License information unavailable'
_URLs = {
_DATASETNAME: "https://raw.githubusercontent.com/curai/medical-question-pair-dataset/master/mqp.csv",
}
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class MQPDataset(datasets.GeneratorBasedBuilder):
"""Medical Question Pairing dataset"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="mqp_source",
version=SOURCE_VERSION,
description="MQP source schema",
schema="source",
subset_id="mqp",
),
BigBioConfig(
name="mqp_bigbio_pairs",
version=BIGBIO_VERSION,
description="MQP BigBio schema",
schema="bigbio_pairs",
subset_id="mqp",
),
]
DEFAULT_CONFIG_NAME = "mqp_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text_1": datasets.Value("string"),
"text_2": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
# Using in pairs schema
elif self.config.schema == "bigbio_pairs":
features = pairs_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[_DATASETNAME]
data_dir = dl_manager.download_and_extract(my_urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
)
]
def _generate_examples(self, filepath, split):
"""Yields examples as (key, example) tuples."""
if split == "train": # There's only training dataset available atm
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file,
quotechar='"',
delimiter=",",
quoting=csv.QUOTE_ALL,
skipinitialspace=True,
)
if self.config.schema == "source":
for id_, row in enumerate(csv_reader):
document_id, text_1, text_2, label = row
yield id_, {
"document_id": document_id,
"text_1": text_1,
"text_2": text_2,
"label": label,
}
elif self.config.schema == "bigbio_pairs":
# global id (uid) starts from 1
uid = 0
for id_, row in enumerate(csv_reader):
uid += 1
document_id, text_1, text_2, label = row
yield id_, {
"id": uid, # uid is an unique identifier for every record that starts from 1
"document_id": document_id,
"text_1": text_1,
"text_2": text_2,
"label": label,
}
else:
print("There's no test/val split available for the given dataset")
return
|