File size: 1,410 Bytes
619fa81 5110c7b 619fa81 3dc977e 5110c7b 619fa81 5110c7b 619fa81 408873b 619fa81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
language:
- en
bigbio_language:
- English
license: unknown
multilinguality: monolingual
bigbio_license_shortname: UNKNOWN
pretty_name: MQP
homepage: https://github.com/curai/medical-question-pair-dataset
bigbio_pubmed: False
bigbio_public: True
bigbio_tasks:
- SEMANTIC_SIMILARITY
---
# Dataset Card for MQP
## Dataset Description
- **Homepage:** https://github.com/curai/medical-question-pair-dataset
- **Pubmed:** False
- **Public:** True
- **Tasks:** STS
Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of
the question prepared by medical professional. Paraphrased versions were labelled as similar (syntactically dissimilar
but contextually similar ) or dissimilar (syntactically may look similar but contextually dissimilar). Labels 1: similar, 0: dissimilar
## Citation Information
```
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
author = {Krallinger, M., Rabal, O., Lourenço, A.},
title = {Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs},
journal = {KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining},
volume = {3458–3465},
year = {2020},
url = {https://github.com/curai/medical-question-pair-dataset},
doi = {},
biburl = {},
bibsource = {}
}
```
|