Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 1,410 Bytes
619fa81
 
 
 
5110c7b
 
619fa81
3dc977e
5110c7b
619fa81
5110c7b
 
 
 
 
619fa81
 
 
 
 
 
 
 
 
 
408873b
619fa81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

---
language: 
- en
bigbio_language: 
- English
license: unknown
multilinguality: monolingual
bigbio_license_shortname: UNKNOWN
pretty_name: MQP
homepage: https://github.com/curai/medical-question-pair-dataset
bigbio_pubmed: False
bigbio_public: True
bigbio_tasks: 
- SEMANTIC_SIMILARITY
---


# Dataset Card for MQP

## Dataset Description

- **Homepage:** https://github.com/curai/medical-question-pair-dataset
- **Pubmed:** False
- **Public:** True
- **Tasks:** STS


Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of 
the question prepared by medical professional. Paraphrased versions were labelled as similar (syntactically dissimilar 
but contextually similar ) or dissimilar (syntactically may look similar but contextually dissimilar). Labels 1: similar, 0: dissimilar



## Citation Information

```
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
  author    = {Krallinger, M., Rabal, O., Lourenço, A.},
  title     = {Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs},
  journal   = {KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining},
  volume    = {3458–3465},
  year      = {2020},
  url       = {https://github.com/curai/medical-question-pair-dataset},
  doi       = {},
  biburl    = {},
  bibsource = {}
}

```