Commit
·
91edb34
1
Parent(s):
da1e13d
upload hubscripts/msh_wsd_hub.py to hub from bigbio repo
Browse files- msh_wsd.py +268 -0
msh_wsd.py
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Evaluation of Word Sense Disambiguation methods (WSD) in the biomedical domain is difficult because the available
|
18 |
+
resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We have
|
19 |
+
developed a method that can be used to automatically develop a WSD test collection using the Unified Medical Language
|
20 |
+
System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. The resulting dataset is called MSH WSD and
|
21 |
+
consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203
|
22 |
+
ambiguous words. Each instance containing the ambiguous word was assigned a CUI from the 2009AB version of the UMLS.
|
23 |
+
For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from
|
24 |
+
MEDLINE; totaling 37,888 ambiguity cases in 37,090 MEDLINE citations.
|
25 |
+
|
26 |
+
Note from the Author how to load dataset:
|
27 |
+
1) Download the file MSHCorpus.zip (Link "MSHWSD Data Set") from
|
28 |
+
https://lhncbc.nlm.nih.gov/ii/areas/WSD/collaboration.html
|
29 |
+
2) Set kwarg data_dir to the directory containing MSHCorpus.zip
|
30 |
+
"""
|
31 |
+
|
32 |
+
import itertools as it
|
33 |
+
import os
|
34 |
+
import re
|
35 |
+
from dataclasses import dataclass
|
36 |
+
from pathlib import Path
|
37 |
+
from typing import Dict, List, Tuple
|
38 |
+
|
39 |
+
import datasets
|
40 |
+
|
41 |
+
from .bigbiohub import kb_features
|
42 |
+
from .bigbiohub import BigBioConfig
|
43 |
+
from .bigbiohub import Tasks
|
44 |
+
|
45 |
+
_LANGUAGES = ['English']
|
46 |
+
_PUBMED = True
|
47 |
+
_LOCAL = True
|
48 |
+
_CITATION = """\
|
49 |
+
@article{jimeno2011exploiting,
|
50 |
+
title={Exploiting MeSH indexing in MEDLINE to generate a data set for word sense disambiguation},
|
51 |
+
author={Jimeno-Yepes, Antonio J and McInnes, Bridget T and Aronson, Alan R},
|
52 |
+
journal={BMC bioinformatics},
|
53 |
+
volume={12},
|
54 |
+
number={1},
|
55 |
+
pages={1--14},
|
56 |
+
year={2011},
|
57 |
+
publisher={BioMed Central}
|
58 |
+
}
|
59 |
+
"""
|
60 |
+
|
61 |
+
_DESCRIPTION = """\
|
62 |
+
Evaluation of Word Sense Disambiguation methods (WSD) in the biomedical domain is difficult because the available
|
63 |
+
resources are either too small or too focused on specific types of entities (e.g. diseases or genes). We have
|
64 |
+
developed a method that can be used to automatically develop a WSD test collection using the Unified Medical Language
|
65 |
+
System (UMLS) Metathesaurus and the manual MeSH indexing of MEDLINE. The resulting dataset is called MSH WSD and
|
66 |
+
consists of 106 ambiguous abbreviations, 88 ambiguous terms and 9 which are a combination of both, for a total of 203
|
67 |
+
ambiguous words. Each instance containing the ambiguous word was assigned a CUI from the 2009AB version of the UMLS.
|
68 |
+
For each ambiguous term/abbreviation, the data set contains a maximum of 100 instances per sense obtained from
|
69 |
+
MEDLINE; totaling 37,888 ambiguity cases in 37,090 MEDLINE citations.
|
70 |
+
"""
|
71 |
+
|
72 |
+
_DATASETNAME = "msh_wsd"
|
73 |
+
_DISPLAYNAME = "MSH WSD"
|
74 |
+
|
75 |
+
_HOMEPAGE = "https://lhncbc.nlm.nih.gov/ii/areas/WSD/collaboration.html"
|
76 |
+
|
77 |
+
_LICENSE = 'UMLS - Metathesaurus License Agreement'
|
78 |
+
|
79 |
+
_URLS = {_DATASETNAME: ""}
|
80 |
+
|
81 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
82 |
+
|
83 |
+
_SOURCE_VERSION = "1.0.0"
|
84 |
+
|
85 |
+
_BIGBIO_VERSION = "1.0.0"
|
86 |
+
|
87 |
+
|
88 |
+
@dataclass
|
89 |
+
class MshWsdBigBioConfig(BigBioConfig):
|
90 |
+
schema: str = "source"
|
91 |
+
name: str = "msh_wsd_source"
|
92 |
+
version: datasets.Version = datasets.Version(_SOURCE_VERSION)
|
93 |
+
description: str = "MSH-WSD source schema"
|
94 |
+
subset_id: str = "msh_wsd"
|
95 |
+
|
96 |
+
|
97 |
+
class MshWsdDataset(datasets.GeneratorBasedBuilder):
|
98 |
+
"""Biomedical Word Sense Disambiguation (WSD)."""
|
99 |
+
|
100 |
+
uid = it.count(0)
|
101 |
+
|
102 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
103 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
104 |
+
|
105 |
+
BUILDER_CONFIGS = [
|
106 |
+
MshWsdBigBioConfig(
|
107 |
+
name="msh_wsd_source",
|
108 |
+
version=SOURCE_VERSION,
|
109 |
+
description="MSH-WSD source schema",
|
110 |
+
schema="source",
|
111 |
+
subset_id="msh_wsd",
|
112 |
+
),
|
113 |
+
MshWsdBigBioConfig(
|
114 |
+
name="msh_wsd_bigbio_kb",
|
115 |
+
version=BIGBIO_VERSION,
|
116 |
+
description="MSH-WSD BigBio schema",
|
117 |
+
schema="bigbio_kb",
|
118 |
+
subset_id="msh_wsd",
|
119 |
+
),
|
120 |
+
]
|
121 |
+
|
122 |
+
BUILDER_CONFIG_CLASS = MshWsdBigBioConfig
|
123 |
+
|
124 |
+
def _info(self) -> datasets.DatasetInfo:
|
125 |
+
if self.config.schema == "source":
|
126 |
+
features = datasets.Features(
|
127 |
+
{
|
128 |
+
"ambiguous_word": datasets.Value("string"),
|
129 |
+
"sentences": [
|
130 |
+
{
|
131 |
+
"pmid": datasets.Value("string"),
|
132 |
+
"text": datasets.Value("string"),
|
133 |
+
"label": datasets.Value("string"),
|
134 |
+
}
|
135 |
+
],
|
136 |
+
"choices": [
|
137 |
+
{
|
138 |
+
"label": datasets.Value("string"),
|
139 |
+
"concept": datasets.Value("string"),
|
140 |
+
}
|
141 |
+
],
|
142 |
+
}
|
143 |
+
)
|
144 |
+
elif self.config.schema == "bigbio_kb":
|
145 |
+
features = kb_features
|
146 |
+
|
147 |
+
return datasets.DatasetInfo(
|
148 |
+
description=_DESCRIPTION,
|
149 |
+
features=features,
|
150 |
+
homepage=_HOMEPAGE,
|
151 |
+
license=str(_LICENSE),
|
152 |
+
citation=_CITATION,
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
156 |
+
"""Returns SplitGenerators."""
|
157 |
+
|
158 |
+
if self.config.data_dir is None:
|
159 |
+
raise ValueError(
|
160 |
+
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
data_dir = dl_manager.download_and_extract(
|
164 |
+
os.path.join(self.config.data_dir, "MSHCorpus.zip")
|
165 |
+
)
|
166 |
+
|
167 |
+
return [
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name=datasets.Split.TRAIN,
|
170 |
+
gen_kwargs={
|
171 |
+
"data_dir": Path(data_dir),
|
172 |
+
},
|
173 |
+
),
|
174 |
+
]
|
175 |
+
|
176 |
+
def _generate_examples(self, data_dir: Path) -> Tuple[int, Dict]:
|
177 |
+
"""Yields examples as (key, example) tuples."""
|
178 |
+
data_dir = data_dir / "MSHCorpus"
|
179 |
+
concepts = data_dir / "benchmark_mesh.txt"
|
180 |
+
with concepts.open() as f:
|
181 |
+
concepts = f.readlines()
|
182 |
+
concepts = [x.strip().split("\t") for x in concepts]
|
183 |
+
|
184 |
+
concept_map = {
|
185 |
+
cuis[0]: {f"M{num}": cui for num, cui in enumerate(cuis[1:], 1)}
|
186 |
+
for cuis in concepts
|
187 |
+
}
|
188 |
+
|
189 |
+
files = list(data_dir.glob("*arff"))
|
190 |
+
for guid, file in enumerate(files):
|
191 |
+
if self.config.schema == "source":
|
192 |
+
for example in self._parse_document(concept_map, file):
|
193 |
+
yield guid, example
|
194 |
+
|
195 |
+
elif self.config.schema == "bigbio_kb":
|
196 |
+
for document in self._parse_document(concept_map, file):
|
197 |
+
for example in self._source_to_kb(document):
|
198 |
+
yield example["id"], example
|
199 |
+
|
200 |
+
def _parse_document(self, concept_map, file: Path):
|
201 |
+
with file.open(mode="r", encoding="iso-8859-1") as f:
|
202 |
+
content = f.readlines()
|
203 |
+
content = [x.strip() for x in content]
|
204 |
+
|
205 |
+
# search line number of @DATA, sometimes 6 or 7
|
206 |
+
start_l = None
|
207 |
+
for number, line in enumerate(content):
|
208 |
+
if line.startswith("@DATA"):
|
209 |
+
start_l = number + 1
|
210 |
+
break
|
211 |
+
assert start_l is not None
|
212 |
+
|
213 |
+
amb_word = file.with_suffix("").name[: -len("_pmids_tagged")]
|
214 |
+
|
215 |
+
sentences = []
|
216 |
+
for line in content[start_l:]:
|
217 |
+
# cant use , or ," ", as seperator
|
218 |
+
m_pmid = re.search("[0-9]+(?=(,))", line)
|
219 |
+
pmid = m_pmid.group()
|
220 |
+
m_label = re.search("(?<=(,))M[0-9]+", line)
|
221 |
+
label = m_label.group()
|
222 |
+
|
223 |
+
citation = line[m_pmid.span()[1] + 1 : m_label.span()[0] - 1].strip('"')
|
224 |
+
|
225 |
+
sentences.append({"pmid": pmid, "text": citation, "label": label})
|
226 |
+
|
227 |
+
yield {
|
228 |
+
"ambiguous_word": amb_word,
|
229 |
+
"sentences": sentences,
|
230 |
+
"choices": [
|
231 |
+
{"label": key, "concept": value}
|
232 |
+
for key, value in concept_map[amb_word].items()
|
233 |
+
],
|
234 |
+
}
|
235 |
+
|
236 |
+
def _source_to_kb(self, document):
|
237 |
+
choices = {x["label"]: x["concept"] for x in document["choices"]}
|
238 |
+
for sentence in document["sentences"]:
|
239 |
+
document_ = {}
|
240 |
+
document_["events"] = []
|
241 |
+
document_["relations"] = []
|
242 |
+
document_["coreferences"] = []
|
243 |
+
document_["id"] = next(self.uid)
|
244 |
+
document_["document_id"] = sentence["pmid"]
|
245 |
+
document_["passages"] = [
|
246 |
+
{
|
247 |
+
"id": next(self.uid),
|
248 |
+
"type": "",
|
249 |
+
"text": [sentence["text"]],
|
250 |
+
"offsets": [[0, len(sentence["text"])]],
|
251 |
+
}
|
252 |
+
]
|
253 |
+
document_["entities"] = [
|
254 |
+
{
|
255 |
+
"id": next(self.uid),
|
256 |
+
"type": "ambiguous_word",
|
257 |
+
"text": [document["ambiguous_word"]],
|
258 |
+
"offsets": [self._parse_offset(sentence["text"])],
|
259 |
+
"normalized": [
|
260 |
+
{"db_name": "MeSH", "db_id": choices[sentence["label"]]}
|
261 |
+
],
|
262 |
+
}
|
263 |
+
]
|
264 |
+
yield document_
|
265 |
+
|
266 |
+
def _parse_offset(self, sentence):
|
267 |
+
m = re.search("(?<=(<e>)).+(?=(</e>))", sentence)
|
268 |
+
return m.span()
|