File size: 1,803 Bytes
9599335 e7d2017 9599335 93a4f06 e7d2017 9599335 e7d2017 9599335 8af2dfe 9599335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
language:
- en
bigbio_language:
- English
license: mit
multilinguality: monolingual
bigbio_license_shortname: MIT
pretty_name: Multi-XScience
homepage: https://github.com/yaolu/Multi-XScience
bigbio_pubmed: False
bigbio_public: True
bigbio_tasks:
- PARAPHRASING
- SUMMARIZATION
---
# Dataset Card for Multi-XScience
## Dataset Description
- **Homepage:** https://github.com/yaolu/Multi-XScience
- **Pubmed:** False
- **Public:** True
- **Tasks:** PARA,SUM
Multi-document summarization is a challenging task for which there exists little large-scale datasets.
We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles.
Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section
of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization,
a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and
empirical results---using several state-of-the-art models trained on the Multi-XScience dataset---reveal t
hat Multi-XScience is well suited for abstractive models.
## Citation Information
```
@misc{https://doi.org/10.48550/arxiv.2010.14235,
doi = {10.48550/ARXIV.2010.14235},
url = {https://arxiv.org/abs/2010.14235},
author = {Lu, Yao and Dong, Yue and Charlin, Laurent},
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles},
publisher = {arXiv},
year = {2020},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
|