gabrielaltay
commited on
Commit
·
1b0f43f
1
Parent(s):
9839018
upload hubscripts/multi_xscience_hub.py to hub from bigbio repo
Browse files- multi_xscience.py +205 -0
multi_xscience.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from typing import List
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from .bigbiohub import text2text_features
|
23 |
+
from .bigbiohub import BigBioConfig
|
24 |
+
from .bigbiohub import Tasks
|
25 |
+
|
26 |
+
_LANGUAGES = ['English']
|
27 |
+
_PUBMED = False
|
28 |
+
_LOCAL = False
|
29 |
+
_CITATION = """\
|
30 |
+
@misc{https://doi.org/10.48550/arxiv.2010.14235,
|
31 |
+
doi = {10.48550/ARXIV.2010.14235},
|
32 |
+
|
33 |
+
url = {https://arxiv.org/abs/2010.14235},
|
34 |
+
|
35 |
+
author = {Lu, Yao and Dong, Yue and Charlin, Laurent},
|
36 |
+
|
37 |
+
keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
38 |
+
|
39 |
+
title = {Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles},
|
40 |
+
|
41 |
+
publisher = {arXiv},
|
42 |
+
|
43 |
+
year = {2020},
|
44 |
+
|
45 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "multi_xscience"
|
50 |
+
_DISPLAYNAME = "Multi-XScience"
|
51 |
+
|
52 |
+
_DESCRIPTION = """\
|
53 |
+
Multi-document summarization is a challenging task for which there exists little large-scale datasets.
|
54 |
+
We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles.
|
55 |
+
Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section
|
56 |
+
of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization,
|
57 |
+
a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and
|
58 |
+
empirical results---using several state-of-the-art models trained on the Multi-XScience dataset---reveal t
|
59 |
+
hat Multi-XScience is well suited for abstractive models.
|
60 |
+
"""
|
61 |
+
|
62 |
+
_HOMEPAGE = "https://github.com/yaolu/Multi-XScience"
|
63 |
+
|
64 |
+
_LICENSE = 'MIT License'
|
65 |
+
|
66 |
+
_URLS = {
|
67 |
+
_DATASETNAME: [
|
68 |
+
"https://github.com/yaolu/Multi-XScience/blob/master/data/train.json.gz?raw=true",
|
69 |
+
"https://github.com/yaolu/Multi-XScience/blob/master/data/test.json.gz?raw=true",
|
70 |
+
"https://github.com/yaolu/Multi-XScience/blob/master/data/val.json.gz?raw=true",
|
71 |
+
],
|
72 |
+
}
|
73 |
+
|
74 |
+
_SUPPORTED_TASKS = [Tasks.PARAPHRASING, Tasks.SUMMARIZATION]
|
75 |
+
|
76 |
+
_SOURCE_VERSION = "1.0.0"
|
77 |
+
|
78 |
+
_BIGBIO_VERSION = "1.0.0"
|
79 |
+
|
80 |
+
|
81 |
+
class MultiXScience(datasets.GeneratorBasedBuilder):
|
82 |
+
"""
|
83 |
+
Dataset for the EMNLP 2020 paper, Multi-XScience:
|
84 |
+
A Large-scale Dataset for Extreme Multi-document Summarization
|
85 |
+
of Scientific Articles.
|
86 |
+
"""
|
87 |
+
|
88 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
89 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
90 |
+
|
91 |
+
BUILDER_CONFIGS = [
|
92 |
+
BigBioConfig(
|
93 |
+
name="multi_xscience_source",
|
94 |
+
version=SOURCE_VERSION,
|
95 |
+
description="multi_xscience source schema",
|
96 |
+
schema="source",
|
97 |
+
subset_id="multi_xscience",
|
98 |
+
),
|
99 |
+
BigBioConfig(
|
100 |
+
name="multi_xscience_bigbio_t2t",
|
101 |
+
version=BIGBIO_VERSION,
|
102 |
+
description="multi_xscienceBigBio schema",
|
103 |
+
schema="bigbio_t2t",
|
104 |
+
subset_id="multi_xscience",
|
105 |
+
),
|
106 |
+
]
|
107 |
+
|
108 |
+
DEFAULT_CONFIG_NAME = "multi_xscience_source"
|
109 |
+
|
110 |
+
def _info(self) -> datasets.DatasetInfo:
|
111 |
+
|
112 |
+
if self.config.schema == "source":
|
113 |
+
features = datasets.Features(
|
114 |
+
{
|
115 |
+
"aid": datasets.Value("string"),
|
116 |
+
"mid": datasets.Value("string"),
|
117 |
+
"abstract": datasets.Value("string"),
|
118 |
+
"ref_abstract": datasets.Sequence(
|
119 |
+
{
|
120 |
+
"mid": datasets.Value("string"),
|
121 |
+
"abstract": datasets.Value("string"),
|
122 |
+
}
|
123 |
+
),
|
124 |
+
}
|
125 |
+
)
|
126 |
+
elif self.config.schema == "bigbio_t2t":
|
127 |
+
features = text2text_features
|
128 |
+
|
129 |
+
return datasets.DatasetInfo(
|
130 |
+
description=_DESCRIPTION,
|
131 |
+
features=features,
|
132 |
+
homepage=_HOMEPAGE,
|
133 |
+
license=str(_LICENSE),
|
134 |
+
citation=_CITATION,
|
135 |
+
)
|
136 |
+
|
137 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
138 |
+
|
139 |
+
urls = _URLS[_DATASETNAME]
|
140 |
+
data_dir = dl_manager.download_and_extract(urls)
|
141 |
+
|
142 |
+
return [
|
143 |
+
datasets.SplitGenerator(
|
144 |
+
name=datasets.Split.TRAIN,
|
145 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
146 |
+
gen_kwargs={
|
147 |
+
"filepath": os.path.join(data_dir[0]).replace("\\", "/"),
|
148 |
+
"split": "train",
|
149 |
+
},
|
150 |
+
),
|
151 |
+
datasets.SplitGenerator(
|
152 |
+
name=datasets.Split.TEST,
|
153 |
+
gen_kwargs={
|
154 |
+
"filepath": os.path.join(data_dir[1]).replace("\\", "/"),
|
155 |
+
"split": "test",
|
156 |
+
},
|
157 |
+
),
|
158 |
+
datasets.SplitGenerator(
|
159 |
+
name=datasets.Split.VALIDATION,
|
160 |
+
gen_kwargs={
|
161 |
+
"filepath": os.path.join(data_dir[2]).replace("\\", "/"),
|
162 |
+
"split": "val",
|
163 |
+
},
|
164 |
+
),
|
165 |
+
]
|
166 |
+
|
167 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
168 |
+
|
169 |
+
def _generate_examples(self, filepath, split):
|
170 |
+
j_file = open(filepath, "r")
|
171 |
+
j_file.seek(0)
|
172 |
+
j_json = json.load(j_file)
|
173 |
+
|
174 |
+
if self.config.schema == "source":
|
175 |
+
for key, example in enumerate(j_json):
|
176 |
+
yield key, {
|
177 |
+
"aid": example["aid"],
|
178 |
+
"mid": example["mid"],
|
179 |
+
"abstract": example["abstract"],
|
180 |
+
"ref_abstract": [
|
181 |
+
{
|
182 |
+
"mid": example["ref_abstract"][key]["mid"],
|
183 |
+
"abstract": example["ref_abstract"][key]["abstract"],
|
184 |
+
}
|
185 |
+
for key in example["ref_abstract"].keys()
|
186 |
+
],
|
187 |
+
}
|
188 |
+
|
189 |
+
elif self.config.schema == "bigbio_t2t":
|
190 |
+
uid = 0
|
191 |
+
|
192 |
+
for key, example in enumerate(j_json):
|
193 |
+
uid += 1
|
194 |
+
yield key, {
|
195 |
+
"id": str(uid),
|
196 |
+
"document_id": str(key),
|
197 |
+
"text_1": example["abstract"],
|
198 |
+
"text_2": " ".join(
|
199 |
+
[e["abstract"] for e in example["ref_abstract"].values()]
|
200 |
+
),
|
201 |
+
"text_1_name": "Abstract of query paper",
|
202 |
+
"text_2_name": "Cite abstracts",
|
203 |
+
}
|
204 |
+
|
205 |
+
j_file.close()
|