gabrielaltay
commited on
Commit
•
49c3010
1
Parent(s):
cc6a2a8
upload hubscripts/n2c2_2018_track2_hub.py to hub from bigbio repo
Browse files- n2c2_2018_track2.py +448 -0
n2c2_2018_track2.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
"""
|
18 |
+
A dataset loader for the n2c2 2018 Adverse Drug Events and Medication Extraction dataset.
|
19 |
+
|
20 |
+
The dataset consists of multiple archive files two of which are being used by the script,
|
21 |
+
├── training_20180910.zip
|
22 |
+
└── gold-standard-test-data.zip
|
23 |
+
|
24 |
+
The individual data files (inside the zip and tar archives) come in 4 types,
|
25 |
+
|
26 |
+
* docs (*.txt files): text of a patient record
|
27 |
+
* annotations (*.ann files): entities and relations along with offsets used as input to a NER / RE model
|
28 |
+
|
29 |
+
The files comprising this dataset must be on the users local machine
|
30 |
+
in a single directory that is passed to `datasets.load_dataset` via
|
31 |
+
the `data_dir` kwarg. This loader script will read the archive files
|
32 |
+
directly (i.e. the user should not uncompress, untar or unzip any of
|
33 |
+
the files).
|
34 |
+
|
35 |
+
Data Access from https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
|
36 |
+
|
37 |
+
[bigbio_schema_name] = kb
|
38 |
+
"""
|
39 |
+
|
40 |
+
import os
|
41 |
+
import zipfile
|
42 |
+
from collections import defaultdict
|
43 |
+
from typing import Dict, List, Tuple
|
44 |
+
|
45 |
+
import datasets
|
46 |
+
|
47 |
+
from .bigbiohub import kb_features
|
48 |
+
from .bigbiohub import BigBioConfig
|
49 |
+
from .bigbiohub import Tasks
|
50 |
+
|
51 |
+
_LANGUAGES = ['English']
|
52 |
+
_PUBMED = False
|
53 |
+
_LOCAL = True
|
54 |
+
_CITATION = """\
|
55 |
+
@article{DBLP:journals/jamia/HenryBFSU20,
|
56 |
+
author = {
|
57 |
+
Sam Henry and
|
58 |
+
Kevin Buchan and
|
59 |
+
Michele Filannino and
|
60 |
+
Amber Stubbs and
|
61 |
+
Ozlem Uzuner
|
62 |
+
},
|
63 |
+
title = {2018 n2c2 shared task on adverse drug events and medication extraction
|
64 |
+
in electronic health records},
|
65 |
+
journal = {J. Am. Medical Informatics Assoc.},
|
66 |
+
volume = {27},
|
67 |
+
number = {1},
|
68 |
+
pages = {3--12},
|
69 |
+
year = {2020},
|
70 |
+
url = {https://doi.org/10.1093/jamia/ocz166},
|
71 |
+
doi = {10.1093/jamia/ocz166},
|
72 |
+
timestamp = {Sat, 30 May 2020 19:53:56 +0200},
|
73 |
+
biburl = {https://dblp.org/rec/journals/jamia/HenryBFSU20.bib},
|
74 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
75 |
+
}
|
76 |
+
"""
|
77 |
+
|
78 |
+
_DATASETNAME = "n2c2_2018_track2"
|
79 |
+
_DISPLAYNAME = "n2c2 2018 ADE"
|
80 |
+
|
81 |
+
_DESCRIPTION = """\
|
82 |
+
The National NLP Clinical Challenges (n2c2), organized in 2018, continued the
|
83 |
+
legacy of i2b2 (Informatics for Biology and the Bedside), adding 2 new tracks and 2
|
84 |
+
new sets of data to the shared tasks organized since 2006. Track 2 of 2018
|
85 |
+
n2c2 shared tasks focused on the extraction of medications, with their signature
|
86 |
+
information, and adverse drug events (ADEs) from clinical narratives.
|
87 |
+
This track built on our previous medication challenge, but added a special focus on ADEs.
|
88 |
+
|
89 |
+
ADEs are injuries resulting from a medical intervention related to a drugs and
|
90 |
+
can include allergic reactions, drug interactions, overdoses, and medication errors.
|
91 |
+
Collectively, ADEs are estimated to account for 30% of all hospital adverse
|
92 |
+
events; however, ADEs are preventable. Identifying potential drug interactions,
|
93 |
+
overdoses, allergies, and errors at the point of care and alerting the caregivers of
|
94 |
+
potential ADEs can improve health delivery, reduce the risk of ADEs, and improve health
|
95 |
+
outcomes.
|
96 |
+
|
97 |
+
A step in this direction requires processing narratives of clinical records
|
98 |
+
that often elaborate on the medications given to a patient, as well as the known
|
99 |
+
allergies, reactions, and adverse events of the patient. Extraction of this information
|
100 |
+
from narratives complements the structured medication information that can be
|
101 |
+
obtained from prescriptions, allowing a more thorough assessment of potential ADEs
|
102 |
+
before they happen.
|
103 |
+
|
104 |
+
The 2018 n2c2 shared task Track 2, hereon referred to as the ADE track,
|
105 |
+
tackled these natural language processing tasks in 3 different steps,
|
106 |
+
which we refer to as tasks:
|
107 |
+
1. Concept Extraction: identification of concepts related to medications,
|
108 |
+
their signature information, and ADEs
|
109 |
+
2. Relation Classification: linking the previously mentioned concepts to
|
110 |
+
their medication by identifying relations on gold standard concepts
|
111 |
+
3. End-to-End: building end-to-end systems that process raw narrative text
|
112 |
+
to discover concepts and find relations of those concepts to their medications
|
113 |
+
|
114 |
+
Shared tasks provide a venue for head-to-head comparison of systems developed
|
115 |
+
for the same task and on the same data, allowing researchers to identify the state
|
116 |
+
of the art in a particular task, learn from it, and build on it.
|
117 |
+
"""
|
118 |
+
|
119 |
+
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
|
120 |
+
|
121 |
+
_LICENSE = 'Data User Agreement'
|
122 |
+
|
123 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
|
124 |
+
|
125 |
+
_SOURCE_VERSION = "1.0.0" # 2018-09-10
|
126 |
+
_BIGBIO_VERSION = "1.0.0"
|
127 |
+
|
128 |
+
# Constants
|
129 |
+
DELIMITER = "||"
|
130 |
+
SOURCE = "source"
|
131 |
+
BIGBIO_KB = "bigbio_kb"
|
132 |
+
ID = "id"
|
133 |
+
ANNOTATIONS_EXT = "ann"
|
134 |
+
TEXT, TEXT_EXT = "text", "txt"
|
135 |
+
TAG, TAGS = "tag", "tags"
|
136 |
+
RELATION, RELATIONS = "relation", "relations"
|
137 |
+
START, END = "start", "end"
|
138 |
+
|
139 |
+
N2C2_2018_NER_LABELS = sorted(
|
140 |
+
[
|
141 |
+
"Drug",
|
142 |
+
"Frequency",
|
143 |
+
"Reason",
|
144 |
+
"ADE",
|
145 |
+
"Dosage",
|
146 |
+
"Duration",
|
147 |
+
"Form",
|
148 |
+
"Route",
|
149 |
+
"Strength",
|
150 |
+
]
|
151 |
+
)
|
152 |
+
N2C2_2018_RELATION_LABELS = sorted(
|
153 |
+
[
|
154 |
+
"Frequency-Drug",
|
155 |
+
"Strength-Drug",
|
156 |
+
"Route-Drug",
|
157 |
+
"Dosage-Drug",
|
158 |
+
"ADE-Drug",
|
159 |
+
"Reason-Drug",
|
160 |
+
"Duration-Drug",
|
161 |
+
"Form-Drug",
|
162 |
+
]
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
def _form_id(sample_id, entity_id, split):
|
167 |
+
return "{}-{}-{}".format(sample_id, entity_id, split)
|
168 |
+
|
169 |
+
|
170 |
+
def _build_concept_dict(tag_id, tag_start, tag_end, tag_type, tag_text):
|
171 |
+
return {
|
172 |
+
ID: tag_id,
|
173 |
+
TEXT: tag_text,
|
174 |
+
START: int(tag_start),
|
175 |
+
END: int(tag_end),
|
176 |
+
TAG: tag_type,
|
177 |
+
}
|
178 |
+
|
179 |
+
|
180 |
+
def _build_relation_dict(rel_id, arg1, arg2, rel_type):
|
181 |
+
return {
|
182 |
+
ID: rel_id,
|
183 |
+
"arg1_id": arg1,
|
184 |
+
"arg2_id": arg2,
|
185 |
+
RELATION: rel_type,
|
186 |
+
}
|
187 |
+
|
188 |
+
|
189 |
+
def _get_annotations(annotation_file):
|
190 |
+
"""Return a dictionary with all the annotations in the .ann file.
|
191 |
+
|
192 |
+
A typical line has either of the following form,
|
193 |
+
1. 'T41 Form 8977 8990 ophthalmology' -> '<ID> <CONCEPT> <START CHAR OFFSET> <END CHAR OFFSET> <TEXT>'
|
194 |
+
2. 'R22 Form-Drug Arg1:T41 Arg2:T40' -> '<ID> <RELATION> <CONCEPT_1_ID> <CONCEPT_2_ID>'
|
195 |
+
|
196 |
+
"""
|
197 |
+
tags, relations = {}, {}
|
198 |
+
lines = annotation_file.splitlines()
|
199 |
+
for line_num, line in enumerate(filter(lambda l: l.strip().startswith("T"), lines)):
|
200 |
+
try:
|
201 |
+
tag_id, tag_m, tag_text = line.strip().split("\t")
|
202 |
+
except ValueError:
|
203 |
+
print(line)
|
204 |
+
|
205 |
+
if len(tag_m.split(" ")) == 3:
|
206 |
+
tag_type, tag_start, tag_end = tag_m.split(" ")
|
207 |
+
elif len(tag_m.split(" ")) == 4:
|
208 |
+
tag_type, tag_start, _, tag_end = tag_m.split(" ")
|
209 |
+
elif len(tag_m.split(" ")) == 5:
|
210 |
+
tag_type, tag_start, _, _, tag_end = tag_m.split(" ")
|
211 |
+
else:
|
212 |
+
print(line)
|
213 |
+
tags[tag_id] = _build_concept_dict(
|
214 |
+
tag_id, tag_start, tag_end, tag_type, tag_text
|
215 |
+
)
|
216 |
+
|
217 |
+
for line_num, line in enumerate(filter(lambda l: l.strip().startswith("R"), lines)):
|
218 |
+
rel_id, rel_m = line.strip().split("\t")
|
219 |
+
rel_type, rel_arg1, rel_arg2 = rel_m.split(" ")
|
220 |
+
rel_arg1 = rel_arg1.split(":")[1]
|
221 |
+
rel_arg2 = rel_arg2.split(":")[1]
|
222 |
+
arg1 = tags[rel_arg1][ID]
|
223 |
+
arg2 = tags[rel_arg2][ID]
|
224 |
+
relations[rel_id] = _build_relation_dict(rel_id, arg1, arg2, rel_type)
|
225 |
+
|
226 |
+
return tags.values(), relations.values()
|
227 |
+
|
228 |
+
|
229 |
+
def _read_zip(file_path):
|
230 |
+
samples = defaultdict(dict)
|
231 |
+
with zipfile.ZipFile(file_path) as zf:
|
232 |
+
for info in zf.infolist():
|
233 |
+
|
234 |
+
base, filename = os.path.split(info.filename)
|
235 |
+
_, ext = os.path.splitext(filename)
|
236 |
+
ext = ext[1:] # get rid of dot
|
237 |
+
sample_id = filename.split(".")[0]
|
238 |
+
|
239 |
+
if ext in [TEXT_EXT, ANNOTATIONS_EXT] and not filename.startswith("."):
|
240 |
+
content = zf.read(info).decode("utf-8")
|
241 |
+
if ext == TEXT_EXT:
|
242 |
+
samples[sample_id][ext] = content
|
243 |
+
else:
|
244 |
+
(
|
245 |
+
samples[sample_id][TAGS],
|
246 |
+
samples[sample_id][RELATIONS],
|
247 |
+
) = _get_annotations(content)
|
248 |
+
|
249 |
+
return samples
|
250 |
+
|
251 |
+
|
252 |
+
def _get_entities_from_sample(sample_id, sample, split):
|
253 |
+
entities = []
|
254 |
+
entity_ids = set()
|
255 |
+
text = sample[TEXT_EXT]
|
256 |
+
for entity in sample[TAGS]:
|
257 |
+
text_slice = text[entity[START] : entity[END]]
|
258 |
+
text_slice_norm_1 = text_slice.replace("\n", "").lower()
|
259 |
+
text_slice_norm_2 = text_slice.replace("\n", " ").lower()
|
260 |
+
match = text_slice_norm_1 == entity[TEXT] or text_slice_norm_2 == entity[TEXT]
|
261 |
+
if not match:
|
262 |
+
continue
|
263 |
+
|
264 |
+
entity_id = _form_id(sample_id, entity[ID], split)
|
265 |
+
entity_ids.add(entity_id)
|
266 |
+
entities.append(
|
267 |
+
{
|
268 |
+
ID: entity_id,
|
269 |
+
"type": entity[TAG],
|
270 |
+
TEXT: [text_slice],
|
271 |
+
"offsets": [(entity[START], entity[END])],
|
272 |
+
"normalized": [],
|
273 |
+
}
|
274 |
+
)
|
275 |
+
|
276 |
+
return entities, entity_ids
|
277 |
+
|
278 |
+
|
279 |
+
def _get_relations_from_sample(sample_id, sample, split, entity_ids):
|
280 |
+
"""
|
281 |
+
A small number of relation from the *.ann files could not be
|
282 |
+
aligned with the text and were excluded. For this reason we
|
283 |
+
pass in the full set of matched entity IDs and ensure that
|
284 |
+
no relations refers to an excluded entity.
|
285 |
+
"""
|
286 |
+
relations = []
|
287 |
+
for relation in sample[RELATIONS]:
|
288 |
+
arg1_id = _form_id(sample_id, relation["arg1_id"], split)
|
289 |
+
arg2_id = _form_id(sample_id, relation["arg2_id"], split)
|
290 |
+
if arg1_id in entity_ids and arg2_id in entity_ids:
|
291 |
+
relations.append(
|
292 |
+
{
|
293 |
+
ID: _form_id(sample_id, relation[ID], split),
|
294 |
+
"type": relation[RELATION],
|
295 |
+
"arg1_id": _form_id(sample_id, relation["arg1_id"], split),
|
296 |
+
"arg2_id": _form_id(sample_id, relation["arg2_id"], split),
|
297 |
+
"normalized": [],
|
298 |
+
}
|
299 |
+
)
|
300 |
+
|
301 |
+
return relations
|
302 |
+
|
303 |
+
|
304 |
+
class N2C2AdverseDrugEventsMedicationExtractionDataset(datasets.GeneratorBasedBuilder):
|
305 |
+
"""n2c2 2018 Track 2 concept and relation task"""
|
306 |
+
|
307 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
308 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
309 |
+
|
310 |
+
SOURCE_CONFIG_NAME = _DATASETNAME + "_" + SOURCE
|
311 |
+
BIGBIO_CONFIG_NAME = _DATASETNAME + "_" + BIGBIO_KB
|
312 |
+
|
313 |
+
BUILDER_CONFIGS = [
|
314 |
+
BigBioConfig(
|
315 |
+
name=SOURCE_CONFIG_NAME,
|
316 |
+
version=SOURCE_VERSION,
|
317 |
+
description=_DATASETNAME + " source schema",
|
318 |
+
schema=SOURCE,
|
319 |
+
subset_id=_DATASETNAME,
|
320 |
+
),
|
321 |
+
BigBioConfig(
|
322 |
+
name=BIGBIO_CONFIG_NAME,
|
323 |
+
version=BIGBIO_VERSION,
|
324 |
+
description=_DATASETNAME + " BigBio schema",
|
325 |
+
schema=BIGBIO_KB,
|
326 |
+
subset_id=_DATASETNAME,
|
327 |
+
),
|
328 |
+
]
|
329 |
+
|
330 |
+
DEFAULT_CONFIG_NAME = SOURCE_CONFIG_NAME
|
331 |
+
|
332 |
+
def _info(self) -> datasets.DatasetInfo:
|
333 |
+
|
334 |
+
if self.config.schema == SOURCE:
|
335 |
+
features = datasets.Features(
|
336 |
+
{
|
337 |
+
"doc_id": datasets.Value("string"),
|
338 |
+
TEXT: datasets.Value("string"),
|
339 |
+
TAGS: [
|
340 |
+
{
|
341 |
+
ID: datasets.Value("string"),
|
342 |
+
TEXT: datasets.Value("string"),
|
343 |
+
START: datasets.Value("int64"),
|
344 |
+
END: datasets.Value("int64"),
|
345 |
+
TAG: datasets.ClassLabel(names=N2C2_2018_NER_LABELS),
|
346 |
+
}
|
347 |
+
],
|
348 |
+
RELATIONS: [
|
349 |
+
{
|
350 |
+
ID: datasets.Value("string"),
|
351 |
+
"arg1_id": datasets.Value("string"),
|
352 |
+
"arg2_id": datasets.Value("string"),
|
353 |
+
RELATION: datasets.ClassLabel(
|
354 |
+
names=N2C2_2018_RELATION_LABELS
|
355 |
+
),
|
356 |
+
}
|
357 |
+
],
|
358 |
+
}
|
359 |
+
)
|
360 |
+
|
361 |
+
elif self.config.schema == BIGBIO_KB:
|
362 |
+
features = kb_features
|
363 |
+
|
364 |
+
return datasets.DatasetInfo(
|
365 |
+
description=_DESCRIPTION,
|
366 |
+
features=features,
|
367 |
+
homepage=_HOMEPAGE,
|
368 |
+
license=str(_LICENSE),
|
369 |
+
citation=_CITATION,
|
370 |
+
)
|
371 |
+
|
372 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
373 |
+
"""Returns SplitGenerators."""
|
374 |
+
if self.config.data_dir is None or self.config.name is None:
|
375 |
+
raise ValueError(
|
376 |
+
"This is a local dataset. Please pass the data_dir and name kwarg to load_dataset."
|
377 |
+
)
|
378 |
+
else:
|
379 |
+
data_dir = self.config.data_dir
|
380 |
+
|
381 |
+
return [
|
382 |
+
datasets.SplitGenerator(
|
383 |
+
name=datasets.Split.TRAIN,
|
384 |
+
gen_kwargs={
|
385 |
+
"file_path": os.path.join(data_dir, "training_20180910.zip"),
|
386 |
+
"split": datasets.Split.TRAIN,
|
387 |
+
},
|
388 |
+
),
|
389 |
+
datasets.SplitGenerator(
|
390 |
+
name=datasets.Split.TEST,
|
391 |
+
gen_kwargs={
|
392 |
+
"file_path": os.path.join(data_dir, "gold-standard-test-data.zip"),
|
393 |
+
"split": datasets.Split.TEST,
|
394 |
+
},
|
395 |
+
),
|
396 |
+
]
|
397 |
+
|
398 |
+
@staticmethod
|
399 |
+
def _get_source_sample(sample_id, sample):
|
400 |
+
return {
|
401 |
+
"doc_id": sample_id,
|
402 |
+
TEXT: sample.get(TEXT_EXT, ""),
|
403 |
+
TAGS: sample.get(TAGS, []),
|
404 |
+
RELATIONS: sample.get(RELATIONS, []),
|
405 |
+
}
|
406 |
+
|
407 |
+
@staticmethod
|
408 |
+
def _get_bigbio_sample(sample_id, sample, split) -> dict:
|
409 |
+
|
410 |
+
passage_text = sample.get("txt", "")
|
411 |
+
entities, entity_ids = _get_entities_from_sample(sample_id, sample, split)
|
412 |
+
relations = _get_relations_from_sample(sample_id, sample, split, entity_ids)
|
413 |
+
return {
|
414 |
+
"id": sample_id,
|
415 |
+
"document_id": sample_id,
|
416 |
+
"passages": [
|
417 |
+
{
|
418 |
+
"id": f"{sample_id}-passage-0",
|
419 |
+
"type": "discharge summary",
|
420 |
+
"text": [passage_text],
|
421 |
+
"offsets": [(0, len(passage_text))],
|
422 |
+
}
|
423 |
+
],
|
424 |
+
"entities": entities,
|
425 |
+
"relations": relations,
|
426 |
+
"events": [],
|
427 |
+
"coreferences": [],
|
428 |
+
}
|
429 |
+
|
430 |
+
def _generate_examples(self, file_path, split: str) -> Tuple[int, Dict]:
|
431 |
+
"""Yields examples as (key, example) tuples."""
|
432 |
+
samples = _read_zip(file_path)
|
433 |
+
|
434 |
+
_id = 0
|
435 |
+
for sample_id, sample in samples.items():
|
436 |
+
|
437 |
+
if (
|
438 |
+
self.config.name
|
439 |
+
== N2C2AdverseDrugEventsMedicationExtractionDataset.SOURCE_CONFIG_NAME
|
440 |
+
):
|
441 |
+
yield _id, self._get_source_sample(sample_id, sample)
|
442 |
+
elif (
|
443 |
+
self.config.name
|
444 |
+
== N2C2AdverseDrugEventsMedicationExtractionDataset.BIGBIO_CONFIG_NAME
|
445 |
+
):
|
446 |
+
yield _id, self._get_bigbio_sample(sample_id, sample, split)
|
447 |
+
|
448 |
+
_id += 1
|