Commit
·
d685881
1
Parent(s):
4c9912b
upload hubscripts/ncbi_disease_hub.py to hub from bigbio repo
Browse files- ncbi_disease.py +249 -0
ncbi_disease.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
The NCBI disease corpus is fully annotated at the mention and concept level to serve as a research
|
18 |
+
resource for the biomedical natural language processing community.
|
19 |
+
"""
|
20 |
+
|
21 |
+
import os
|
22 |
+
from typing import Dict, Iterator, List, Tuple
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
from bioc import pubtator
|
26 |
+
|
27 |
+
from .bigbiohub import kb_features
|
28 |
+
from .bigbiohub import BigBioConfig
|
29 |
+
from .bigbiohub import Tasks
|
30 |
+
|
31 |
+
_LANGUAGES = ['English']
|
32 |
+
_PUBMED = True
|
33 |
+
_LOCAL = False
|
34 |
+
_CITATION = """\
|
35 |
+
@article{Dogan2014NCBIDC,
|
36 |
+
title = {NCBI disease corpus: A resource for disease name recognition and concept normalization},
|
37 |
+
author = {Rezarta Islamaj Dogan and Robert Leaman and Zhiyong Lu},
|
38 |
+
year = 2014,
|
39 |
+
journal = {Journal of biomedical informatics},
|
40 |
+
volume = 47,
|
41 |
+
pages = {1--10}
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DATASETNAME = "ncbi_disease"
|
46 |
+
_DISPLAYNAME = "NCBI Disease"
|
47 |
+
|
48 |
+
_DESCRIPTION = """\
|
49 |
+
The NCBI disease corpus is fully annotated at the mention and concept level to serve as a research
|
50 |
+
resource for the biomedical natural language processing community.
|
51 |
+
"""
|
52 |
+
|
53 |
+
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/"
|
54 |
+
_LICENSE = 'Creative Commons Zero v1.0 Universal'
|
55 |
+
|
56 |
+
_URLS = {
|
57 |
+
_DATASETNAME: {
|
58 |
+
datasets.Split.TRAIN: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBItrainset_corpus.zip",
|
59 |
+
datasets.Split.TEST: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBItestset_corpus.zip",
|
60 |
+
datasets.Split.VALIDATION: "https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBIdevelopset_corpus.zip",
|
61 |
+
}
|
62 |
+
}
|
63 |
+
|
64 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
65 |
+
|
66 |
+
_SOURCE_VERSION = "1.0.0"
|
67 |
+
_BIGBIO_VERSION = "1.0.0"
|
68 |
+
|
69 |
+
|
70 |
+
class NCBIDiseaseDataset(datasets.GeneratorBasedBuilder):
|
71 |
+
"""NCBI Disease"""
|
72 |
+
|
73 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
74 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
75 |
+
|
76 |
+
BUILDER_CONFIGS = [
|
77 |
+
BigBioConfig(
|
78 |
+
name="ncbi_disease_source",
|
79 |
+
version=SOURCE_VERSION,
|
80 |
+
description="NCBI Disease source schema",
|
81 |
+
schema="source",
|
82 |
+
subset_id="ncbi_disease",
|
83 |
+
),
|
84 |
+
BigBioConfig(
|
85 |
+
name="ncbi_disease_bigbio_kb",
|
86 |
+
version=BIGBIO_VERSION,
|
87 |
+
description="NCBI Disease BigBio schema",
|
88 |
+
schema="bigbio_kb",
|
89 |
+
subset_id="ncbi_disease",
|
90 |
+
),
|
91 |
+
]
|
92 |
+
|
93 |
+
DEFAULT_CONFIG_NAME = "ncbi_disease_source"
|
94 |
+
|
95 |
+
def _info(self) -> datasets.DatasetInfo:
|
96 |
+
|
97 |
+
if self.config.schema == "source":
|
98 |
+
features = datasets.Features(
|
99 |
+
{
|
100 |
+
"pmid": datasets.Value("string"),
|
101 |
+
"title": datasets.Value("string"),
|
102 |
+
"abstract": datasets.Value("string"),
|
103 |
+
"mentions": [
|
104 |
+
{
|
105 |
+
"concept_id": datasets.Value("string"),
|
106 |
+
"type": datasets.Value("string"),
|
107 |
+
"text": datasets.Value("string"),
|
108 |
+
"offsets": datasets.Sequence(datasets.Value("int32")),
|
109 |
+
}
|
110 |
+
],
|
111 |
+
}
|
112 |
+
)
|
113 |
+
|
114 |
+
elif self.config.schema == "bigbio_kb":
|
115 |
+
features = kb_features
|
116 |
+
|
117 |
+
return datasets.DatasetInfo(
|
118 |
+
description=_DESCRIPTION,
|
119 |
+
features=features,
|
120 |
+
homepage=_HOMEPAGE,
|
121 |
+
license=str(_LICENSE),
|
122 |
+
citation=_CITATION,
|
123 |
+
)
|
124 |
+
|
125 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
126 |
+
urls = _URLS[_DATASETNAME]
|
127 |
+
data_dir = dl_manager.download_and_extract(urls)
|
128 |
+
|
129 |
+
train_filename = "NCBItrainset_corpus.txt"
|
130 |
+
test_filename = "NCBItestset_corpus.txt"
|
131 |
+
dev_filename = "NCBIdevelopset_corpus.txt"
|
132 |
+
|
133 |
+
train_filepath = os.path.join(data_dir[datasets.Split.TRAIN], train_filename)
|
134 |
+
test_filepath = os.path.join(data_dir[datasets.Split.TEST], test_filename)
|
135 |
+
dev_filepath = os.path.join(data_dir[datasets.Split.VALIDATION], dev_filename)
|
136 |
+
|
137 |
+
return [
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=datasets.Split.TRAIN,
|
140 |
+
gen_kwargs={
|
141 |
+
"filepath": train_filepath,
|
142 |
+
"split": "train",
|
143 |
+
},
|
144 |
+
),
|
145 |
+
datasets.SplitGenerator(
|
146 |
+
name=datasets.Split.TEST,
|
147 |
+
gen_kwargs={
|
148 |
+
"filepath": test_filepath,
|
149 |
+
"split": "test",
|
150 |
+
},
|
151 |
+
),
|
152 |
+
datasets.SplitGenerator(
|
153 |
+
name=datasets.Split.VALIDATION,
|
154 |
+
gen_kwargs={
|
155 |
+
"filepath": dev_filepath,
|
156 |
+
"split": "dev",
|
157 |
+
},
|
158 |
+
),
|
159 |
+
]
|
160 |
+
|
161 |
+
def _generate_examples(
|
162 |
+
self, filepath: str, split: str
|
163 |
+
) -> Iterator[Tuple[str, Dict]]:
|
164 |
+
if self.config.schema == "source":
|
165 |
+
for i, source_example in enumerate(self._pubtator_to_source(filepath)):
|
166 |
+
# Some examples are duplicated in NCBI Disease. We have to make them unique to
|
167 |
+
# avoid and error from datasets.
|
168 |
+
yield str(i) + "_" + source_example["pmid"], source_example
|
169 |
+
|
170 |
+
elif self.config.schema == "bigbio_kb":
|
171 |
+
seen = []
|
172 |
+
for kb_example in self._pubtator_to_bigbio_kb(filepath):
|
173 |
+
# Some examples are duplicated in NCBI Disease. Avoid yielding more than once.
|
174 |
+
if kb_example["id"] in seen:
|
175 |
+
continue
|
176 |
+
yield kb_example["id"], kb_example
|
177 |
+
seen.append(kb_example["id"])
|
178 |
+
|
179 |
+
@staticmethod
|
180 |
+
def _pubtator_to_source(filepath: Dict) -> Iterator[Dict]:
|
181 |
+
with open(filepath, "r") as f:
|
182 |
+
for doc in pubtator.iterparse(f):
|
183 |
+
source_example = {
|
184 |
+
"pmid": doc.pmid,
|
185 |
+
"title": doc.title,
|
186 |
+
"abstract": doc.abstract,
|
187 |
+
"mentions": [
|
188 |
+
{
|
189 |
+
"concept_id": mention.id,
|
190 |
+
"type": mention.type,
|
191 |
+
"text": mention.text,
|
192 |
+
"offsets": [mention.start, mention.end],
|
193 |
+
}
|
194 |
+
for mention in doc.annotations
|
195 |
+
],
|
196 |
+
}
|
197 |
+
yield source_example
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def _pubtator_to_bigbio_kb(filepath: Dict) -> Iterator[Dict]:
|
201 |
+
with open(filepath, "r") as f:
|
202 |
+
unified_example = {}
|
203 |
+
for doc in pubtator.iterparse(f):
|
204 |
+
unified_example["id"] = doc.pmid
|
205 |
+
unified_example["document_id"] = doc.pmid
|
206 |
+
|
207 |
+
unified_example["passages"] = [
|
208 |
+
{
|
209 |
+
"id": doc.pmid + "_title",
|
210 |
+
"type": "title",
|
211 |
+
"text": [doc.title],
|
212 |
+
"offsets": [[0, len(doc.title)]],
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"id": doc.pmid + "_abstract",
|
216 |
+
"type": "abstract",
|
217 |
+
"text": [doc.abstract],
|
218 |
+
"offsets": [
|
219 |
+
[
|
220 |
+
# +1 assumes the title and abstract will be joined by a space.
|
221 |
+
len(doc.title) + 1,
|
222 |
+
len(doc.title) + 1 + len(doc.abstract),
|
223 |
+
]
|
224 |
+
],
|
225 |
+
},
|
226 |
+
]
|
227 |
+
|
228 |
+
unified_entities = []
|
229 |
+
for i, entity in enumerate(doc.annotations):
|
230 |
+
# We need a unique identifier for this entity, so build it from the document id and entity id
|
231 |
+
unified_entity_id = "_".join([doc.pmid, entity.id, str(i)])
|
232 |
+
# The user can provide a callable that returns the database name.
|
233 |
+
db_name = "omim" if "OMIM" in entity.id else "mesh"
|
234 |
+
unified_entities.append(
|
235 |
+
{
|
236 |
+
"id": unified_entity_id,
|
237 |
+
"type": entity.type,
|
238 |
+
"text": [entity.text],
|
239 |
+
"offsets": [[entity.start, entity.end]],
|
240 |
+
"normalized": [{"db_name": db_name, "db_id": entity.id}],
|
241 |
+
}
|
242 |
+
)
|
243 |
+
|
244 |
+
unified_example["entities"] = unified_entities
|
245 |
+
unified_example["relations"] = []
|
246 |
+
unified_example["events"] = []
|
247 |
+
unified_example["coreferences"] = []
|
248 |
+
|
249 |
+
yield unified_example
|