Commit
·
333b52e
1
Parent(s):
fa3920f
upload hubscripts/nlm_gene_hub.py to hub from bigbio repo
Browse files- nlm_gene.py +265 -0
nlm_gene.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import collections
|
16 |
+
import itertools
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
from bioc import biocxml
|
22 |
+
|
23 |
+
from .bigbiohub import kb_features
|
24 |
+
from .bigbiohub import BigBioConfig
|
25 |
+
from .bigbiohub import Tasks
|
26 |
+
|
27 |
+
_LANGUAGES = ['English']
|
28 |
+
_PUBMED = True
|
29 |
+
_LOCAL = False
|
30 |
+
_CITATION = """\
|
31 |
+
@article{islamaj2021nlm,
|
32 |
+
title = {
|
33 |
+
NLM-Gene, a richly annotated gold standard dataset for gene entities that
|
34 |
+
addresses ambiguity and multi-species gene recognition
|
35 |
+
},
|
36 |
+
author = {
|
37 |
+
Islamaj, Rezarta and Wei, Chih-Hsuan and Cissel, David and Miliaras,
|
38 |
+
Nicholas and Printseva, Olga and Rodionov, Oleg and Sekiya, Keiko and Ward,
|
39 |
+
Janice and Lu, Zhiyong
|
40 |
+
},
|
41 |
+
year = 2021,
|
42 |
+
journal = {Journal of Biomedical Informatics},
|
43 |
+
publisher = {Elsevier},
|
44 |
+
volume = 118,
|
45 |
+
pages = 103779
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DATASETNAME = "nlm_gene"
|
50 |
+
_DISPLAYNAME = "NLM-Gene"
|
51 |
+
|
52 |
+
_DESCRIPTION = """\
|
53 |
+
NLM-Gene consists of 550 PubMed articles, from 156 journals, and contains more \
|
54 |
+
than 15 thousand unique gene names, corresponding to more than five thousand \
|
55 |
+
gene identifiers (NCBI Gene taxonomy). This corpus contains gene annotation data \
|
56 |
+
from 28 organisms. The annotated articles contain on average 29 gene names, and \
|
57 |
+
10 gene identifiers per article. These characteristics demonstrate that this \
|
58 |
+
article set is an important benchmark dataset to test the accuracy of gene \
|
59 |
+
recognition algorithms both on multi-species and ambiguous data. The NLM-Gene \
|
60 |
+
corpus will be invaluable for advancing text-mining techniques for gene \
|
61 |
+
identification tasks in biomedical text.
|
62 |
+
"""
|
63 |
+
|
64 |
+
_HOMEPAGE = "https://zenodo.org/record/5089049"
|
65 |
+
|
66 |
+
_LICENSE = 'Creative Commons Zero v1.0 Universal'
|
67 |
+
|
68 |
+
_URLS = {
|
69 |
+
"source": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip",
|
70 |
+
"bigbio_kb": "https://zenodo.org/record/5089049/files/NLM-Gene-Corpus.zip",
|
71 |
+
}
|
72 |
+
|
73 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
74 |
+
|
75 |
+
_SOURCE_VERSION = "1.0.0"
|
76 |
+
_BIGBIO_VERSION = "1.0.0"
|
77 |
+
|
78 |
+
|
79 |
+
class NLMGeneDataset(datasets.GeneratorBasedBuilder):
|
80 |
+
"""NLM-Gene Dataset for gene entities"""
|
81 |
+
|
82 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
83 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
84 |
+
|
85 |
+
BUILDER_CONFIGS = [
|
86 |
+
BigBioConfig(
|
87 |
+
name="nlm_gene_source",
|
88 |
+
version=SOURCE_VERSION,
|
89 |
+
description="NlM Gene source schema",
|
90 |
+
schema="source",
|
91 |
+
subset_id="nlm_gene",
|
92 |
+
),
|
93 |
+
BigBioConfig(
|
94 |
+
name="nlm_gene_bigbio_kb",
|
95 |
+
version=BIGBIO_VERSION,
|
96 |
+
description="NlM Gene BigBio schema",
|
97 |
+
schema="bigbio_kb",
|
98 |
+
subset_id="nlm_gene",
|
99 |
+
),
|
100 |
+
]
|
101 |
+
|
102 |
+
DEFAULT_CONFIG_NAME = "nlm_gene_source"
|
103 |
+
|
104 |
+
def _info(self) -> datasets.DatasetInfo:
|
105 |
+
|
106 |
+
if self.config.schema == "source":
|
107 |
+
if self.config.schema == "source":
|
108 |
+
# this is a variation on the BioC format
|
109 |
+
features = datasets.Features(
|
110 |
+
{
|
111 |
+
"passages": [
|
112 |
+
{
|
113 |
+
"document_id": datasets.Value("string"),
|
114 |
+
"type": datasets.Value("string"),
|
115 |
+
"text": datasets.Value("string"),
|
116 |
+
"entities": [
|
117 |
+
{
|
118 |
+
"id": datasets.Value("string"),
|
119 |
+
"offsets": [[datasets.Value("int32")]],
|
120 |
+
"text": [datasets.Value("string")],
|
121 |
+
"type": datasets.Value("string"),
|
122 |
+
"normalized": [
|
123 |
+
{
|
124 |
+
"db_name": datasets.Value("string"),
|
125 |
+
"db_id": datasets.Value("string"),
|
126 |
+
}
|
127 |
+
],
|
128 |
+
}
|
129 |
+
],
|
130 |
+
}
|
131 |
+
]
|
132 |
+
}
|
133 |
+
)
|
134 |
+
|
135 |
+
elif self.config.schema == "bigbio_kb":
|
136 |
+
features = kb_features
|
137 |
+
|
138 |
+
return datasets.DatasetInfo(
|
139 |
+
description=_DESCRIPTION,
|
140 |
+
features=features,
|
141 |
+
homepage=_HOMEPAGE,
|
142 |
+
license=str(_LICENSE),
|
143 |
+
citation=_CITATION,
|
144 |
+
)
|
145 |
+
|
146 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
147 |
+
"""Returns SplitGenerators."""
|
148 |
+
urls = _URLS[self.config.schema]
|
149 |
+
data_dir = Path(dl_manager.download_and_extract(urls))
|
150 |
+
|
151 |
+
return [
|
152 |
+
datasets.SplitGenerator(
|
153 |
+
name=datasets.Split.TRAIN,
|
154 |
+
gen_kwargs={
|
155 |
+
"filepath": data_dir / "Corpus",
|
156 |
+
"file_name": "Pmidlist.Train.txt",
|
157 |
+
"split": "train",
|
158 |
+
},
|
159 |
+
),
|
160 |
+
datasets.SplitGenerator(
|
161 |
+
name=datasets.Split.TEST,
|
162 |
+
gen_kwargs={
|
163 |
+
"filepath": data_dir / "Corpus",
|
164 |
+
"file_name": "Pmidlist.Test.txt",
|
165 |
+
"split": "test",
|
166 |
+
},
|
167 |
+
),
|
168 |
+
]
|
169 |
+
|
170 |
+
@staticmethod
|
171 |
+
def _get_bioc_entity(
|
172 |
+
span, db_id_key="NCBI Gene identifier", splitters=",;|-"
|
173 |
+
) -> dict:
|
174 |
+
"""Parse BioC entity annotation."""
|
175 |
+
offsets, texts = get_texts_and_offsets_from_bioc_ann(span)
|
176 |
+
db_ids = span.infons.get(db_id_key, "-1")
|
177 |
+
# Find connector between db_ids for the normalization, if not found, use default
|
178 |
+
connector = "|"
|
179 |
+
for splitter in list(splitters):
|
180 |
+
if splitter in db_ids:
|
181 |
+
connector = splitter
|
182 |
+
normalized = [
|
183 |
+
{"db_name": db_id_key, "db_id": db_id} for db_id in db_ids.split(connector)
|
184 |
+
]
|
185 |
+
|
186 |
+
return {
|
187 |
+
"id": span.id,
|
188 |
+
"offsets": offsets,
|
189 |
+
"text": texts,
|
190 |
+
"type": span.infons["type"],
|
191 |
+
"normalized": normalized,
|
192 |
+
}
|
193 |
+
|
194 |
+
def _generate_examples(
|
195 |
+
self, filepath: Path, file_name: str, split: str
|
196 |
+
) -> Tuple[int, Dict]:
|
197 |
+
"""Yields examples as (key, example) tuples."""
|
198 |
+
|
199 |
+
if self.config.schema == "source":
|
200 |
+
with open(filepath / file_name, encoding="utf-8") as f:
|
201 |
+
contents = f.readlines()
|
202 |
+
for uid, content in enumerate(contents):
|
203 |
+
file_id = content.replace("\n", "")
|
204 |
+
file_path = filepath / "FINAL" / f"{file_id}.BioC.XML"
|
205 |
+
reader = biocxml.BioCXMLDocumentReader(file_path.as_posix())
|
206 |
+
for xdoc in reader:
|
207 |
+
yield uid, {
|
208 |
+
"passages": [
|
209 |
+
{
|
210 |
+
"document_id": xdoc.id,
|
211 |
+
"type": passage.infons["type"],
|
212 |
+
"text": passage.text,
|
213 |
+
"entities": [
|
214 |
+
self._get_bioc_entity(span)
|
215 |
+
for span in passage.annotations
|
216 |
+
],
|
217 |
+
}
|
218 |
+
for passage in xdoc.passages
|
219 |
+
]
|
220 |
+
}
|
221 |
+
elif self.config.schema == "bigbio_kb":
|
222 |
+
with open(filepath / file_name, encoding="utf-8") as f:
|
223 |
+
contents = f.readlines()
|
224 |
+
uid = 0 # global unique id
|
225 |
+
for i, content in enumerate(contents):
|
226 |
+
file_id = content.replace("\n", "")
|
227 |
+
file_path = filepath / "FINAL" / f"{file_id}.BioC.XML"
|
228 |
+
reader = biocxml.BioCXMLDocumentReader(file_path.as_posix())
|
229 |
+
for xdoc in reader:
|
230 |
+
data = {
|
231 |
+
"id": uid,
|
232 |
+
"document_id": xdoc.id,
|
233 |
+
"passages": [],
|
234 |
+
"entities": [],
|
235 |
+
"relations": [],
|
236 |
+
"events": [],
|
237 |
+
"coreferences": [],
|
238 |
+
}
|
239 |
+
uid += 1
|
240 |
+
|
241 |
+
char_start = 0
|
242 |
+
# passages must not overlap and spans must cover the entire document
|
243 |
+
for passage in xdoc.passages:
|
244 |
+
offsets = [[char_start, char_start + len(passage.text)]]
|
245 |
+
char_start = char_start + len(passage.text) + 1
|
246 |
+
data["passages"].append(
|
247 |
+
{
|
248 |
+
"id": uid,
|
249 |
+
"type": passage.infons["type"],
|
250 |
+
"text": [passage.text],
|
251 |
+
"offsets": offsets,
|
252 |
+
}
|
253 |
+
)
|
254 |
+
uid += 1
|
255 |
+
# entities
|
256 |
+
for passage in xdoc.passages:
|
257 |
+
for span in passage.annotations:
|
258 |
+
ent = self._get_bioc_entity(
|
259 |
+
span, db_id_key="NCBI Gene identifier"
|
260 |
+
)
|
261 |
+
ent["id"] = uid # override BioC default id
|
262 |
+
data["entities"].append(ent)
|
263 |
+
uid += 1
|
264 |
+
|
265 |
+
yield i, data
|