gabrielaltay
commited on
Commit
·
4afeae3
1
Parent(s):
abedd23
upload hubscripts/pcr_hub.py to hub from bigbio repo
Browse files
pcr.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
A corpus for plant and chemical entities and for the relationships between them.
|
17 |
+
The corpus contains 2218 plant and chemical entities and 600 plant-chemical
|
18 |
+
relationships which are drawn from 1109 sentences in 245 PubMed abstracts.
|
19 |
+
"""
|
20 |
+
from pathlib import Path
|
21 |
+
from typing import Dict, Iterator, Tuple
|
22 |
+
|
23 |
+
import datasets
|
24 |
+
|
25 |
+
from .bigbiohub import kb_features
|
26 |
+
from .bigbiohub import BigBioConfig
|
27 |
+
from .bigbiohub import Tasks
|
28 |
+
|
29 |
+
_LANGUAGES = ['English']
|
30 |
+
_PUBMED = True
|
31 |
+
_LOCAL = False
|
32 |
+
_CITATION = """\
|
33 |
+
@article{choi2016corpus,
|
34 |
+
title = {A corpus for plant-chemical relationships in the biomedical domain},
|
35 |
+
author = {
|
36 |
+
Choi, Wonjun and Kim, Baeksoo and Cho, Hyejin and Lee, Doheon and Lee,
|
37 |
+
Hyunju
|
38 |
+
},
|
39 |
+
year = 2016,
|
40 |
+
journal = {BMC bioinformatics},
|
41 |
+
publisher = {Springer},
|
42 |
+
volume = 17,
|
43 |
+
number = 1,
|
44 |
+
pages = {1--15}
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
_DATASETNAME = "pcr"
|
49 |
+
_DISPLAYNAME = "PCR"
|
50 |
+
|
51 |
+
_DESCRIPTION = """
|
52 |
+
A corpus for plant / herb and chemical entities and for the relationships \
|
53 |
+
between them. The corpus contains 2218 plant and chemical entities and 600 \
|
54 |
+
plant-chemical relationships which are drawn from 1109 sentences in 245 PubMed \
|
55 |
+
abstracts.
|
56 |
+
"""
|
57 |
+
|
58 |
+
_HOMEPAGE = "http://210.107.182.73/plantchemcorpus.htm"
|
59 |
+
_LICENSE = 'License information unavailable'
|
60 |
+
|
61 |
+
_URLS = {_DATASETNAME: "http://210.107.182.73/1109_corpus_units_STformat.tar"}
|
62 |
+
|
63 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.EVENT_EXTRACTION]
|
64 |
+
|
65 |
+
_SOURCE_VERSION = "1.0.0"
|
66 |
+
_BIGBIO_VERSION = "1.0.0"
|
67 |
+
|
68 |
+
|
69 |
+
class PCRDataset(datasets.GeneratorBasedBuilder):
|
70 |
+
"""
|
71 |
+
The corpus of plant-chemical relation consists of plants / herbs and
|
72 |
+
chemicals and relations between them.
|
73 |
+
"""
|
74 |
+
|
75 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
76 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
77 |
+
|
78 |
+
BUILDER_CONFIGS = [
|
79 |
+
BigBioConfig(
|
80 |
+
name="pcr_source",
|
81 |
+
version=SOURCE_VERSION,
|
82 |
+
description="PCR source schema",
|
83 |
+
schema="source",
|
84 |
+
subset_id="pcr",
|
85 |
+
),
|
86 |
+
BigBioConfig(
|
87 |
+
name="pcr_fixed_source",
|
88 |
+
version=SOURCE_VERSION,
|
89 |
+
description="PCR (with fixed offsets) source schema",
|
90 |
+
schema="source",
|
91 |
+
subset_id="pcr_fixed",
|
92 |
+
),
|
93 |
+
BigBioConfig(
|
94 |
+
name="pcr_bigbio_kb",
|
95 |
+
version=BIGBIO_VERSION,
|
96 |
+
description="PCR BigBio schema",
|
97 |
+
schema="bigbio_kb",
|
98 |
+
subset_id="pcr",
|
99 |
+
),
|
100 |
+
]
|
101 |
+
|
102 |
+
DEFAULT_CONFIG_NAME = "pcr_source"
|
103 |
+
|
104 |
+
def _info(self):
|
105 |
+
if self.config.schema == "source":
|
106 |
+
features = datasets.Features(
|
107 |
+
{
|
108 |
+
"document_id": datasets.Value("string"),
|
109 |
+
"text": datasets.Value("string"),
|
110 |
+
"entities": [
|
111 |
+
{
|
112 |
+
"id": datasets.Value("string"),
|
113 |
+
"type": datasets.Value("string"),
|
114 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
115 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
116 |
+
"normalized": [
|
117 |
+
{
|
118 |
+
"db_name": datasets.Value("string"),
|
119 |
+
"db_id": datasets.Value("string"),
|
120 |
+
}
|
121 |
+
],
|
122 |
+
}
|
123 |
+
],
|
124 |
+
"events": [
|
125 |
+
{
|
126 |
+
"id": datasets.Value("string"),
|
127 |
+
"type": datasets.Value("string"),
|
128 |
+
# refers to the text_bound_annotation of the trigger
|
129 |
+
"trigger": {
|
130 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
131 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
132 |
+
},
|
133 |
+
"arguments": [
|
134 |
+
{
|
135 |
+
"role": datasets.Value("string"),
|
136 |
+
"ref_id": datasets.Value("string"),
|
137 |
+
}
|
138 |
+
],
|
139 |
+
}
|
140 |
+
],
|
141 |
+
},
|
142 |
+
)
|
143 |
+
|
144 |
+
elif self.config.schema == "bigbio_kb":
|
145 |
+
features = kb_features
|
146 |
+
|
147 |
+
return datasets.DatasetInfo(
|
148 |
+
description=_DESCRIPTION,
|
149 |
+
features=features,
|
150 |
+
homepage=_HOMEPAGE,
|
151 |
+
license=str(_LICENSE),
|
152 |
+
citation=_CITATION,
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_generators(self, dl_manager):
|
156 |
+
urls = _URLS[_DATASETNAME]
|
157 |
+
data_dir = Path(dl_manager.download_and_extract(urls))
|
158 |
+
data_dir = data_dir / "1109 corpus units"
|
159 |
+
|
160 |
+
return [
|
161 |
+
datasets.SplitGenerator(
|
162 |
+
name=datasets.Split.TRAIN,
|
163 |
+
gen_kwargs={"data_dir": data_dir},
|
164 |
+
)
|
165 |
+
]
|
166 |
+
|
167 |
+
def _generate_examples(self, data_dir: Path) -> Iterator[Tuple[str, Dict]]:
|
168 |
+
if self.config.schema == "source":
|
169 |
+
for file in data_dir.iterdir():
|
170 |
+
if not str(file).endswith(".txt"):
|
171 |
+
continue
|
172 |
+
|
173 |
+
example = parsing.parse_brat_file(file)
|
174 |
+
example = parsing.brat_parse_to_bigbio_kb(example)
|
175 |
+
example = self._to_source_example(example)
|
176 |
+
|
177 |
+
# Three documents have incorrect offsets - fix them for fixed_source scheme
|
178 |
+
if self.config.subset_id == "pcr_fixed" and example["document_id"] in [
|
179 |
+
"463",
|
180 |
+
"509",
|
181 |
+
"566",
|
182 |
+
]:
|
183 |
+
example = self._fix_example(example)
|
184 |
+
|
185 |
+
yield example["document_id"], example
|
186 |
+
|
187 |
+
elif self.config.schema == "bigbio_kb":
|
188 |
+
for file in data_dir.iterdir():
|
189 |
+
if not str(file).endswith(".txt"):
|
190 |
+
continue
|
191 |
+
|
192 |
+
example = parsing.parse_brat_file(file)
|
193 |
+
example = parsing.brat_parse_to_bigbio_kb(example)
|
194 |
+
|
195 |
+
document_id = example["document_id"]
|
196 |
+
example["id"] = document_id
|
197 |
+
|
198 |
+
# Three documents have incorrect offsets - fix them for BigBio scheme
|
199 |
+
if document_id in ["463", "509", "566"]:
|
200 |
+
example = self._fix_example(example)
|
201 |
+
|
202 |
+
yield example["id"], example
|
203 |
+
|
204 |
+
def _to_source_example(self, bigbio_example: Dict) -> Dict:
|
205 |
+
"""
|
206 |
+
Converts an example in BigBio-KB scheme to an example according to the source scheme
|
207 |
+
"""
|
208 |
+
source_example = bigbio_example.copy()
|
209 |
+
source_example["text"] = bigbio_example["passages"][0]["text"][0]
|
210 |
+
|
211 |
+
source_example.pop("passages", None)
|
212 |
+
source_example.pop("relations", None)
|
213 |
+
source_example.pop("coreferences", None)
|
214 |
+
|
215 |
+
return source_example
|
216 |
+
|
217 |
+
def _fix_example(self, example: Dict) -> Dict:
|
218 |
+
"""
|
219 |
+
Fixes by the example by adapting the offsets of the trigger word of the first
|
220 |
+
event. In the official annotation data the end offset is incorrect (for 3 examples).
|
221 |
+
"""
|
222 |
+
first_event = example["events"][0]
|
223 |
+
trigger_text = first_event["trigger"]["text"][0]
|
224 |
+
offsets = first_event["trigger"]["offsets"][0]
|
225 |
+
|
226 |
+
real_offsets = [offsets[0], offsets[0] + len(trigger_text)]
|
227 |
+
example["events"][0]["trigger"]["offsets"] = [real_offsets]
|
228 |
+
|
229 |
+
return example
|