Commit
·
d6637c6
1
Parent(s):
4267eb3
upload hubscripts/pubtator_central_hub.py to hub from bigbio repo
Browse files- pubtator_central.py +305 -0
pubtator_central.py
ADDED
@@ -0,0 +1,305 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
PubTator Central (PTC, https://www.ncbi.nlm.nih.gov/research/pubtator/) [1] is a web service for
|
18 |
+
exploring and retrieving bioconcept annotations in full text biomedical articles. PTC provides
|
19 |
+
automated annotations from state-of-the-art text mining systems for genes/proteins, genetic
|
20 |
+
variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC
|
21 |
+
annotates PubMed (30 million abstracts), the PMC Open Access Subset and the Author Manuscript
|
22 |
+
Collection (3 million full text articles). Updated entity identification methods and a
|
23 |
+
disambiguation module [2] based on cutting-edge deep learning techniques provide increased accuracy.
|
24 |
+
This FTP repository aggregated all the bio-entity annotations in PTC in tab-separated text format.
|
25 |
+
The files are expected to be updated monthly.
|
26 |
+
|
27 |
+
REFERENCE:
|
28 |
+
---------------------------------------------------------------------------
|
29 |
+
[1] Wei C-H, Allot A, Leaman R and Lu Z (2019) "PubTator Central: Automated Concept Annotation for
|
30 |
+
Biomedical Full Text Articles", Nucleic Acids Res.
|
31 |
+
[2] wei C-H, et al., (2019) "Biomedical Mention Disambiguation Using a Deep Learning Approach",
|
32 |
+
ACM-BCB 2019, September 7-10, 2019, Niagara Falls, NY, USA.
|
33 |
+
[3] Wei C-H, Kao H-Y, Lu Z (2015) "GNormPlus: An Integrative Approach for Tagging Gene, Gene Family
|
34 |
+
and Protein Domain", 2015, Article ID 918710
|
35 |
+
[4] Leaman R and Lu Z (2013) "TaggerOne: joint named entity recognition and normalization with
|
36 |
+
semi-Markov Models", Bioinformatics, 32(18): 839-2846
|
37 |
+
[5] Wei C-H, Kao H-Y, Lu Z (2012) "SR4GN: a species recognition software tool for gene normalization",
|
38 |
+
PLoS ONE,7(6):e38460
|
39 |
+
[6] Wei C-H, et al., (2017) "Integrating genomic variant information from literature with dbSNP and
|
40 |
+
ClinVar for precision medicine", Bioinformatics,34(1): 80-87
|
41 |
+
"""
|
42 |
+
|
43 |
+
|
44 |
+
from typing import Dict, Iterator, List, Tuple
|
45 |
+
|
46 |
+
import datasets
|
47 |
+
from bioc import pubtator
|
48 |
+
|
49 |
+
from .bigbiohub import kb_features
|
50 |
+
from .bigbiohub import BigBioConfig
|
51 |
+
from .bigbiohub import Tasks
|
52 |
+
|
53 |
+
_LANGUAGES = ['English']
|
54 |
+
_PUBMED = True
|
55 |
+
_LOCAL = False
|
56 |
+
_CITATION = """\
|
57 |
+
@article{10.1093/nar/gkz389,
|
58 |
+
title = {{PubTator central: automated concept annotation for biomedical full text articles}},
|
59 |
+
author = {Wei, Chih-Hsuan and Allot, Alexis and Leaman, Robert and Lu, Zhiyong},
|
60 |
+
year = 2019,
|
61 |
+
month = {05},
|
62 |
+
journal = {Nucleic Acids Research},
|
63 |
+
volume = 47,
|
64 |
+
number = {W1},
|
65 |
+
pages = {W587-W593},
|
66 |
+
doi = {10.1093/nar/gkz389},
|
67 |
+
issn = {0305-1048},
|
68 |
+
url = {https://doi.org/10.1093/nar/gkz389},
|
69 |
+
eprint = {https://academic.oup.com/nar/article-pdf/47/W1/W587/28880193/gkz389.pdf}
|
70 |
+
}
|
71 |
+
"""
|
72 |
+
|
73 |
+
_DATASETNAME = "pubtator_central"
|
74 |
+
_DISPLAYNAME = "PubTator Central"
|
75 |
+
|
76 |
+
_DESCRIPTION = """\
|
77 |
+
PubTator Central (PTC, https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for
|
78 |
+
exploring and retrieving bioconcept annotations in full text biomedical articles. PTC provides
|
79 |
+
automated annotations from state-of-the-art text mining systems for genes/proteins, genetic
|
80 |
+
variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC
|
81 |
+
annotates PubMed (30 million abstracts), the PMC Open Access Subset and the Author Manuscript
|
82 |
+
Collection (3 million full text articles). Updated entity identification methods and a
|
83 |
+
disambiguation module based on cutting-edge deep learning techniques provide increased accuracy.
|
84 |
+
"""
|
85 |
+
|
86 |
+
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/research/pubtator/"
|
87 |
+
|
88 |
+
_LICENSE = 'National Center fr Biotechnology Information PUBLIC DOMAIN NOTICE'
|
89 |
+
|
90 |
+
_URLS = {
|
91 |
+
"sample": "https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/bioconcepts2pubtatorcentral.offset.sample",
|
92 |
+
"full": "https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/bioconcepts2pubtatorcentral.offset.gz",
|
93 |
+
}
|
94 |
+
|
95 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
|
96 |
+
|
97 |
+
_SOURCE_VERSION = "2022.01.08"
|
98 |
+
_BIGBIO_VERSION = "1.0.0"
|
99 |
+
|
100 |
+
# Maps the entity types in PubTator to the name of the database they are grounded to
|
101 |
+
_TYPE_TO_DB_NAME = {
|
102 |
+
"Gene": "ncbi_gene",
|
103 |
+
"Disease": "mesh",
|
104 |
+
"Species": "ncbi_taxon",
|
105 |
+
"Chemical": "mesh",
|
106 |
+
"CellLine": "cellosaurus",
|
107 |
+
}
|
108 |
+
|
109 |
+
_DB_NAME_TO_URL = {
|
110 |
+
"ncbi_gene": "https://www.ncbi.nlm.nih.gov/gene/",
|
111 |
+
"mesh": "https://www.nlm.nih.gov/mesh/meshhome.html",
|
112 |
+
"ncbi_taxon": "https://www.ncbi.nlm.nih.gov/taxonomy/",
|
113 |
+
"cellosaurus": "https://web.expasy.org/cellosaurus/",
|
114 |
+
"ncbi_dbsnp": "https://www.ncbi.nlm.nih.gov/snp/",
|
115 |
+
"tmvar": "https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/",
|
116 |
+
}
|
117 |
+
|
118 |
+
|
119 |
+
class PubtatorCentralDataset(datasets.GeneratorBasedBuilder):
|
120 |
+
"""PubTator Central"""
|
121 |
+
|
122 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
123 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
124 |
+
|
125 |
+
BUILDER_CONFIGS = [
|
126 |
+
# sample source
|
127 |
+
BigBioConfig(
|
128 |
+
name="pubtator_central_sample_source",
|
129 |
+
version=SOURCE_VERSION,
|
130 |
+
description="PubTator Central sample source schema",
|
131 |
+
schema="source",
|
132 |
+
subset_id="pubtator_central_sample",
|
133 |
+
),
|
134 |
+
# sample big bio
|
135 |
+
BigBioConfig(
|
136 |
+
name="pubtator_central_sample_bigbio_kb",
|
137 |
+
version=BIGBIO_VERSION,
|
138 |
+
description="PubTator Central sample BigBio schema",
|
139 |
+
schema="bigbio_kb",
|
140 |
+
subset_id="pubtator_central_sample",
|
141 |
+
),
|
142 |
+
# full dataset source
|
143 |
+
BigBioConfig(
|
144 |
+
name="pubtator_central_source",
|
145 |
+
version=SOURCE_VERSION,
|
146 |
+
description="PubTator Central source schema",
|
147 |
+
schema="source",
|
148 |
+
subset_id="pubtator_central",
|
149 |
+
),
|
150 |
+
# full dataset bigbio
|
151 |
+
BigBioConfig(
|
152 |
+
name="pubtator_central_bigbio_kb",
|
153 |
+
version=BIGBIO_VERSION,
|
154 |
+
description="PubTator Central BigBio schema",
|
155 |
+
schema="bigbio_kb",
|
156 |
+
subset_id="pubtator_central",
|
157 |
+
),
|
158 |
+
]
|
159 |
+
|
160 |
+
DEFAULT_CONFIG_NAME = "pubtator_central_source"
|
161 |
+
|
162 |
+
def _info(self) -> datasets.DatasetInfo:
|
163 |
+
|
164 |
+
if self.config.schema == "source":
|
165 |
+
features = datasets.Features(
|
166 |
+
{
|
167 |
+
"pmid": datasets.Value("string"),
|
168 |
+
"title": datasets.Value("string"),
|
169 |
+
"abstract": datasets.Value("string"),
|
170 |
+
"mentions": [
|
171 |
+
{
|
172 |
+
"concept_id": datasets.Value("string"),
|
173 |
+
"type": datasets.Value("string"),
|
174 |
+
"text": datasets.Value("string"),
|
175 |
+
"offsets": datasets.Sequence(datasets.Value("int32")),
|
176 |
+
}
|
177 |
+
],
|
178 |
+
}
|
179 |
+
)
|
180 |
+
|
181 |
+
elif self.config.schema == "bigbio_kb":
|
182 |
+
features = kb_features
|
183 |
+
|
184 |
+
return datasets.DatasetInfo(
|
185 |
+
description=_DESCRIPTION,
|
186 |
+
features=features,
|
187 |
+
homepage=_HOMEPAGE,
|
188 |
+
license=str(_LICENSE),
|
189 |
+
citation=_CITATION,
|
190 |
+
)
|
191 |
+
|
192 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
193 |
+
"""Returns SplitGenerators."""
|
194 |
+
urls = (
|
195 |
+
_URLS["sample"]
|
196 |
+
if self.config.subset_id.endswith("sample")
|
197 |
+
else _URLS["full"]
|
198 |
+
)
|
199 |
+
data_dir = dl_manager.download_and_extract(urls)
|
200 |
+
|
201 |
+
return [
|
202 |
+
datasets.SplitGenerator(
|
203 |
+
name=datasets.Split.TRAIN,
|
204 |
+
gen_kwargs={
|
205 |
+
"filepath": data_dir,
|
206 |
+
"split": "train",
|
207 |
+
},
|
208 |
+
),
|
209 |
+
]
|
210 |
+
|
211 |
+
def _generate_examples(
|
212 |
+
self, filepath: str, split: str
|
213 |
+
) -> Iterator[Tuple[str, Dict]]:
|
214 |
+
if self.config.schema == "source":
|
215 |
+
for source_example in self._pubtator_to_source(filepath):
|
216 |
+
yield source_example["pmid"], source_example
|
217 |
+
|
218 |
+
elif self.config.schema == "bigbio_kb":
|
219 |
+
for kb_example in self._pubtator_to_bigbio_kb(filepath):
|
220 |
+
yield kb_example["id"], kb_example
|
221 |
+
|
222 |
+
@staticmethod
|
223 |
+
def _pubtator_to_source(filepath: Dict) -> Iterator[Dict]:
|
224 |
+
with open(filepath, "r") as f:
|
225 |
+
for doc in pubtator.iterparse(f):
|
226 |
+
source_example = {
|
227 |
+
"pmid": doc.pmid,
|
228 |
+
"title": doc.title,
|
229 |
+
"abstract": doc.abstract,
|
230 |
+
"mentions": [
|
231 |
+
{
|
232 |
+
"concept_id": mention.id,
|
233 |
+
"type": mention.type,
|
234 |
+
"text": mention.text,
|
235 |
+
"offsets": [mention.start, mention.end],
|
236 |
+
}
|
237 |
+
for mention in doc.annotations
|
238 |
+
],
|
239 |
+
}
|
240 |
+
yield source_example
|
241 |
+
|
242 |
+
def _pubtator_to_bigbio_kb(self, filepath: Dict) -> Iterator[Dict]:
|
243 |
+
with open(filepath, "r") as f:
|
244 |
+
unified_example = {}
|
245 |
+
for doc in pubtator.iterparse(f):
|
246 |
+
unified_example["id"] = doc.pmid
|
247 |
+
unified_example["document_id"] = doc.pmid
|
248 |
+
|
249 |
+
unified_example["passages"] = [
|
250 |
+
{
|
251 |
+
"id": doc.pmid + "_title",
|
252 |
+
"type": "title",
|
253 |
+
"text": [doc.title],
|
254 |
+
"offsets": [[0, len(doc.title)]],
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"id": doc.pmid + "_abstract",
|
258 |
+
"type": "abstract",
|
259 |
+
"text": [doc.abstract],
|
260 |
+
"offsets": [
|
261 |
+
[
|
262 |
+
# +1 assumes the title and abstract will be joined by a space.
|
263 |
+
len(doc.title) + 1,
|
264 |
+
len(doc.title) + 1 + len(doc.abstract),
|
265 |
+
]
|
266 |
+
],
|
267 |
+
},
|
268 |
+
]
|
269 |
+
|
270 |
+
unified_entities = []
|
271 |
+
for i, entity in enumerate(doc.annotations):
|
272 |
+
# We need a unique identifier for this entity, so build it from the document id and entity id
|
273 |
+
unified_entity_id = "_".join([doc.pmid, entity.id, str(i)])
|
274 |
+
# Determining db_name is tricky so use a helper to determine this from the entity annotation
|
275 |
+
db_name = self._get_db_name(entity)
|
276 |
+
unified_entities.append(
|
277 |
+
{
|
278 |
+
"id": unified_entity_id,
|
279 |
+
"type": entity.type,
|
280 |
+
"text": [entity.text],
|
281 |
+
"offsets": [[entity.start, entity.end]],
|
282 |
+
"normalized": [{"db_name": db_name, "db_id": entity.id}],
|
283 |
+
}
|
284 |
+
)
|
285 |
+
|
286 |
+
unified_example["entities"] = unified_entities
|
287 |
+
unified_example["relations"] = []
|
288 |
+
unified_example["events"] = []
|
289 |
+
unified_example["coreferences"] = []
|
290 |
+
|
291 |
+
yield unified_example
|
292 |
+
|
293 |
+
@staticmethod
|
294 |
+
def _get_db_name(entity: pubtator.PubTatorAnn) -> str:
|
295 |
+
if entity.type in _TYPE_TO_DB_NAME:
|
296 |
+
db_name = _TYPE_TO_DB_NAME[entity.type]
|
297 |
+
elif entity.type in ["Mutation", "ProteinMutation", "DNAMutation"]:
|
298 |
+
# Mutation anntotations are grounded to either tmVar or dbSNP
|
299 |
+
if entity.id.startswith("tmVar"):
|
300 |
+
db_name = "tmVar"
|
301 |
+
else:
|
302 |
+
db_name = "ncbi_dbsnp"
|
303 |
+
else:
|
304 |
+
db_name = "unknown"
|
305 |
+
return db_name
|