File size: 8,671 Bytes
106cf39 6cae36b 106cf39 6cae36b 106cf39 aaa3701 106cf39 aaa3701 106cf39 aaa3701 106cf39 aaa3701 106cf39 aaa3701 106cf39 aaa3701 106cf39 aaa3701 106cf39 aaa3701 106cf39 aaa3701 106cf39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the SciCite dataset.
SciCite is a dataset of 11K manually annotated citation intents based on
citation context in the computer science and biomedical domains.
Some of the code in this module is based on the corresponding module in the
datasets library.
https://github.com/huggingface/datasets/blob/master/datasets/scicite/scicite.py
In the source schema, we follow the datasets implementation and replace
missing values.
TODO: Use standard BigBio missing values.
"""
import json
from typing import Dict, List, Tuple
import datasets
import numpy as np
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{cohan:naacl19,
author = {Arman Cohan and Waleed Ammar and Madeleine van Zuylen and Field Cady},
title = {Structural Scaffolds for Citation Intent Classification in Scientific Publications},
booktitle = {Conference of the North American Chapter of the Association for Computational Linguistics},
year = {2019},
url = {https://aclanthology.org/N19-1361/},
doi = {10.18653/v1/N19-1361},
}
"""
_DATASETNAME = "scicite"
_DISPLAYNAME = "SciCite"
_DESCRIPTION = """\
SciCite is a dataset of 11K manually annotated citation intents based on
citation context in the computer science and biomedical domains.
"""
_HOMEPAGE = "https://allenai.org/data/scicite"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: "https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz",
}
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class SciciteDataset(datasets.GeneratorBasedBuilder):
"""SciCite is a dataset of 11K manually annotated citation intents based on
citation context in the computer science and biomedical domains."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
# You will be able to load the "source" or "bigbio" configurations with
# ds_source = datasets.load_dataset('scicite', name='source')
# ds_bigbio = datasets.load_dataset('scicite', name='bigbio')
BUILDER_CONFIGS = [
BigBioConfig(
name="scicite_source",
version=SOURCE_VERSION,
description="SciCite source schema",
schema="source",
subset_id="scicite",
),
BigBioConfig(
name="scicite_bigbio_text",
version=BIGBIO_VERSION,
description="SciCite BigBio schema",
schema="bigbio_text",
subset_id="scicite",
),
]
DEFAULT_CONFIG_NAME = "scicite_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"source": datasets.Value("string"),
"citeStart": datasets.Value("int64"),
"sectionName": datasets.Value("string"),
"string": datasets.Value("string"),
"citeEnd": datasets.Value("int64"),
"label": datasets.features.ClassLabel(
names=["method", "background", "result"]
),
"label_confidence": datasets.Value("float"),
"label2": datasets.features.ClassLabel(
names=["supportive", "not_supportive", "cant_determine", "none"]
),
"label2_confidence": datasets.Value("float"),
"citingPaperId": datasets.Value("string"),
"citedPaperId": datasets.Value("string"),
"isKeyCitation": datasets.Value("bool"),
"id": datasets.Value("string"),
"unique_id": datasets.Value("string"),
"excerpt_index": datasets.Value("int64"),
}
)
elif self.config.schema == "bigbio_text":
features = text_features
else:
raise ValueError("Unrecognized schema: %s" % self.config.schema)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"archive": dl_manager.iter_archive(data_dir),
"filepath": "scicite/train.jsonl",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"archive": dl_manager.iter_archive(data_dir),
"filepath": "scicite/test.jsonl",
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"archive": dl_manager.iter_archive(data_dir),
"filepath": "scicite/dev.jsonl",
"split": "dev",
},
),
]
def _generate_examples(self, archive, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
for path, file in archive:
if path == filepath:
examples = [json.loads(line) for line in file]
break
# Preprocesses examples
keys = set()
for example in examples:
# Fixes duplicate keys
if example["unique_id"] in keys:
example["unique_id"] = example["unique_id"] + "_duplicate"
else:
keys.add(example["unique_id"])
if self.config.schema == "source":
for example in examples:
yield str(example["unique_id"]), {
"string": example["string"],
"label": str(example["label"]),
"sectionName": str(example["sectionName"]),
"citingPaperId": str(example["citingPaperId"]),
"citedPaperId": str(example["citedPaperId"]),
"excerpt_index": int(example["excerpt_index"]),
"isKeyCitation": bool(example["isKeyCitation"]),
"label2": str(example.get("label2", "none")),
"citeEnd": _safe_int(example["citeEnd"]),
"citeStart": _safe_int(example["citeStart"]),
"source": str(example["source"]),
"label_confidence": float(
example.get("label_confidence", np.nan)
),
"label2_confidence": float(
example.get("label2_confidence", np.nan)
),
"id": str(example["id"]),
"unique_id": str(example["unique_id"]),
}
elif self.config.schema == "bigbio_text":
for example in examples:
if "label2" in example:
labels = [example["label"], example["label2"]]
else:
labels = [example["label"]]
yield str(example["unique_id"]), {
"id": example["unique_id"],
"document_id": example["citingPaperId"],
"text": example["string"],
"labels": labels,
}
def _safe_int(a):
try:
# skip NaNs
return int(a)
except ValueError:
return -1
|