Datasets:

Modalities:
Tabular
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,671 Bytes
106cf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cae36b
106cf39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cae36b
106cf39
 
 
 
 
 
 
 
 
 
 
 
 
 
aaa3701
106cf39
 
 
 
 
aaa3701
 
106cf39
 
 
 
 
 
aaa3701
 
106cf39
 
 
 
 
 
aaa3701
 
106cf39
 
 
 
 
aaa3701
106cf39
 
aaa3701
 
 
 
106cf39
aaa3701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106cf39
aaa3701
 
106cf39
aaa3701
 
 
 
 
 
 
 
106cf39
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
A dataset loader for the SciCite dataset.

SciCite is a dataset of 11K manually annotated citation intents based on
citation context in the computer science and biomedical domains.

Some of the code in this module is based on the corresponding module in the
datasets library.
https://github.com/huggingface/datasets/blob/master/datasets/scicite/scicite.py

In the source schema, we follow the datasets implementation and replace
missing values.
TODO: Use standard BigBio missing values.
"""

import json
from typing import Dict, List, Tuple

import datasets
import numpy as np

from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@inproceedings{cohan:naacl19,
  author    = {Arman Cohan and Waleed Ammar and Madeleine van Zuylen and Field Cady},
  title     = {Structural Scaffolds for Citation Intent Classification in Scientific Publications},
  booktitle = {Conference of the North American Chapter of the Association for Computational Linguistics},
  year      = {2019},
  url       = {https://aclanthology.org/N19-1361/},
  doi       = {10.18653/v1/N19-1361},
}
"""

_DATASETNAME = "scicite"
_DISPLAYNAME = "SciCite"

_DESCRIPTION = """\
SciCite is a dataset of 11K manually annotated citation intents based on
citation context in the computer science and biomedical domains.
"""

_HOMEPAGE = "https://allenai.org/data/scicite"

_LICENSE = 'License information unavailable'

_URLS = {
    _DATASETNAME: "https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz",
}

_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class SciciteDataset(datasets.GeneratorBasedBuilder):
    """SciCite is a dataset of 11K manually annotated citation intents based on
    citation context in the computer science and biomedical domains."""

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    # You will be able to load the "source" or "bigbio" configurations with
    # ds_source = datasets.load_dataset('scicite', name='source')
    # ds_bigbio = datasets.load_dataset('scicite', name='bigbio')

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="scicite_source",
            version=SOURCE_VERSION,
            description="SciCite source schema",
            schema="source",
            subset_id="scicite",
        ),
        BigBioConfig(
            name="scicite_bigbio_text",
            version=BIGBIO_VERSION,
            description="SciCite BigBio schema",
            schema="bigbio_text",
            subset_id="scicite",
        ),
    ]

    DEFAULT_CONFIG_NAME = "scicite_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "source": datasets.Value("string"),
                    "citeStart": datasets.Value("int64"),
                    "sectionName": datasets.Value("string"),
                    "string": datasets.Value("string"),
                    "citeEnd": datasets.Value("int64"),
                    "label": datasets.features.ClassLabel(
                        names=["method", "background", "result"]
                    ),
                    "label_confidence": datasets.Value("float"),
                    "label2": datasets.features.ClassLabel(
                        names=["supportive", "not_supportive", "cant_determine", "none"]
                    ),
                    "label2_confidence": datasets.Value("float"),
                    "citingPaperId": datasets.Value("string"),
                    "citedPaperId": datasets.Value("string"),
                    "isKeyCitation": datasets.Value("bool"),
                    "id": datasets.Value("string"),
                    "unique_id": datasets.Value("string"),
                    "excerpt_index": datasets.Value("int64"),
                }
            )
        elif self.config.schema == "bigbio_text":
            features = text_features
        else:
            raise ValueError("Unrecognized schema: %s" % self.config.schema)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "archive": dl_manager.iter_archive(data_dir),
                    "filepath": "scicite/train.jsonl",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "archive": dl_manager.iter_archive(data_dir),
                    "filepath": "scicite/test.jsonl",
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "archive": dl_manager.iter_archive(data_dir),
                    "filepath": "scicite/dev.jsonl",
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, archive, filepath, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        for path, file in archive:
            if path == filepath:
                examples = [json.loads(line) for line in file]
                break

        # Preprocesses examples
        keys = set()
        for example in examples:
            # Fixes duplicate keys
            if example["unique_id"] in keys:
                example["unique_id"] = example["unique_id"] + "_duplicate"
            else:
                keys.add(example["unique_id"])

        if self.config.schema == "source":
            for example in examples:
                yield str(example["unique_id"]), {
                    "string": example["string"],
                    "label": str(example["label"]),
                    "sectionName": str(example["sectionName"]),
                    "citingPaperId": str(example["citingPaperId"]),
                    "citedPaperId": str(example["citedPaperId"]),
                    "excerpt_index": int(example["excerpt_index"]),
                    "isKeyCitation": bool(example["isKeyCitation"]),
                    "label2": str(example.get("label2", "none")),
                    "citeEnd": _safe_int(example["citeEnd"]),
                    "citeStart": _safe_int(example["citeStart"]),
                    "source": str(example["source"]),
                    "label_confidence": float(
                        example.get("label_confidence", np.nan)
                    ),
                    "label2_confidence": float(
                        example.get("label2_confidence", np.nan)
                    ),
                    "id": str(example["id"]),
                    "unique_id": str(example["unique_id"]),
                }

        elif self.config.schema == "bigbio_text":
            for example in examples:
                if "label2" in example:
                    labels = [example["label"], example["label2"]]
                else:
                    labels = [example["label"]]

                yield str(example["unique_id"]), {
                    "id": example["unique_id"],
                    "document_id": example["citingPaperId"],
                    "text": example["string"],
                    "labels": labels,
                }


def _safe_int(a):
    try:
        # skip NaNs
        return int(a)
    except ValueError:
        return -1