gabrielaltay
commited on
Commit
·
0fc3dba
1
Parent(s):
a5cb561
upload hubscripts/scifact_hub.py to hub from bigbio repo
Browse files- scifact.py +421 -0
scifact.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from itertools import chain
|
19 |
+
from typing import Dict, List, Tuple
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
from datasets import Value
|
23 |
+
import pandas as pd
|
24 |
+
|
25 |
+
from .bigbiohub import pairs.features
|
26 |
+
from .bigbiohub import BigBioConfig
|
27 |
+
from .bigbiohub import Tasks
|
28 |
+
|
29 |
+
_LANGUAGES = ['English']
|
30 |
+
_PUBMED = False
|
31 |
+
_LOCAL = False
|
32 |
+
_CITATION = """\
|
33 |
+
@article{wadden2020fact,
|
34 |
+
author = {David Wadden and Shanchuan Lin and Kyle Lo and Lucy Lu Wang and Madeleine van Zuylen and Arman Cohan and Hannaneh Hajishirzi},
|
35 |
+
title = {Fact or Fiction: Verifying Scientific Claims},
|
36 |
+
year = {2020},
|
37 |
+
address = {Online},
|
38 |
+
publisher = {Association for Computational Linguistics},
|
39 |
+
url = {https://aclanthology.org/2020.emnlp-main.609},
|
40 |
+
doi = {10.18653/v1/2020.emnlp-main.609},
|
41 |
+
pages = {7534--7550},
|
42 |
+
biburl = {},
|
43 |
+
bibsource = {}
|
44 |
+
}
|
45 |
+
"""
|
46 |
+
|
47 |
+
_DATASETNAME = "scifact"
|
48 |
+
_DISPLAYNAME = "SciFact"
|
49 |
+
|
50 |
+
|
51 |
+
_DESCRIPTION_BASE = """\
|
52 |
+
SciFact is a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated with labels and rationales.
|
53 |
+
"""
|
54 |
+
|
55 |
+
_SOURCE_CORPUS_DESCRIPTION = f"""\
|
56 |
+
{_DESCRIPTION_BASE} This config has abstracts and document ids.
|
57 |
+
"""
|
58 |
+
|
59 |
+
_SOURCE_CLAIMS_DESCRIPTION = """\
|
60 |
+
{_DESCRIPTION_BASE} This config connects the claims to the evidence and doc ids.
|
61 |
+
"""
|
62 |
+
|
63 |
+
_BIGBIO_PAIRS_RATIONALE_DESCRIPTION = """\
|
64 |
+
{_DESCRIPTION_BASE} This task is the following: given a claim and a text span composed of one or more sentences from an abstract, predict a label from ("rationale", "not_rationale") indicating if the span is evidence (can be supporting or refuting) for the claim. This roughly corresponds to the second task outlined in Section 5 of the paper."
|
65 |
+
"""
|
66 |
+
|
67 |
+
_BIGBIO_PAIRS_LABELPREDICTION_DESCRIPTION = """\
|
68 |
+
{_DESCRIPTION_BASE} This task is the following: given a claim and a text span composed of one or more sentences from an abstract, predict a label from ("SUPPORT", "NOINFO", "CONTRADICT") indicating if the span supports, provides no info, or contradicts the claim. This roughly corresponds to the thrid task outlined in Section 5 of the paper.
|
69 |
+
"""
|
70 |
+
|
71 |
+
_DESCRIPTION = {
|
72 |
+
"scifact_corpus_source": _SOURCE_CORPUS_DESCRIPTION,
|
73 |
+
"scifact_claims_source": _SOURCE_CLAIMS_DESCRIPTION,
|
74 |
+
"scifact_rationale_bigbio_pairs": _BIGBIO_PAIRS_RATIONALE_DESCRIPTION,
|
75 |
+
"scifact_labelprediction_bigbio_pairs": _BIGBIO_PAIRS_LABELPREDICTION_DESCRIPTION,
|
76 |
+
}
|
77 |
+
|
78 |
+
_HOMEPAGE = "https://scifact.apps.allenai.org/"
|
79 |
+
|
80 |
+
|
81 |
+
_LICENSE = 'Creative Commons Attribution Non Commercial 2.0 Generic'
|
82 |
+
|
83 |
+
_URLS = {
|
84 |
+
_DATASETNAME: "https://scifact.s3-us-west-2.amazonaws.com/release/latest/data.tar.gz",
|
85 |
+
}
|
86 |
+
|
87 |
+
_SUPPORTED_TASKS = [Tasks.TEXT_PAIRS_CLASSIFICATION]
|
88 |
+
|
89 |
+
_SOURCE_VERSION = "1.0.0"
|
90 |
+
|
91 |
+
_BIGBIO_VERSION = "1.0.0"
|
92 |
+
|
93 |
+
|
94 |
+
class SciFact(datasets.GeneratorBasedBuilder):
|
95 |
+
"""
|
96 |
+
SciFact is a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated with labels and rationales.
|
97 |
+
"""
|
98 |
+
|
99 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
100 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
101 |
+
|
102 |
+
BUILDER_CONFIGS = [
|
103 |
+
BigBioConfig(
|
104 |
+
name="scifact_corpus_source",
|
105 |
+
version=SOURCE_VERSION,
|
106 |
+
description="scifact source schema for the corpus config",
|
107 |
+
schema="source",
|
108 |
+
subset_id="scifact_corpus_source",
|
109 |
+
),
|
110 |
+
BigBioConfig(
|
111 |
+
name="scifact_claims_source",
|
112 |
+
version=SOURCE_VERSION,
|
113 |
+
description="scifact source schema for the claims config",
|
114 |
+
schema="source",
|
115 |
+
subset_id="scifact_claims_source",
|
116 |
+
),
|
117 |
+
BigBioConfig(
|
118 |
+
name="scifact_rationale_bigbio_pairs",
|
119 |
+
version=BIGBIO_VERSION,
|
120 |
+
description="scifact BigBio text pairs classification schema for rationale task",
|
121 |
+
schema="bigbio_pairs",
|
122 |
+
subset_id="scifact_rationale_pairs",
|
123 |
+
),
|
124 |
+
BigBioConfig(
|
125 |
+
name="scifact_labelprediction_bigbio_pairs",
|
126 |
+
version=BIGBIO_VERSION,
|
127 |
+
description="scifact BigBio text pairs classification schema for label prediction task",
|
128 |
+
schema="bigbio_pairs",
|
129 |
+
subset_id="scifact_labelprediction_pairs",
|
130 |
+
),
|
131 |
+
]
|
132 |
+
|
133 |
+
DEFAULT_CONFIG_NAME = "scifact_claims_source"
|
134 |
+
|
135 |
+
def _info(self) -> datasets.DatasetInfo:
|
136 |
+
|
137 |
+
if self.config.schema == "source":
|
138 |
+
# modified from
|
139 |
+
# https://huggingface.co/datasets/scifact/blob/main/scifact.py#L50
|
140 |
+
|
141 |
+
if self.config.name == "scifact_corpus_source":
|
142 |
+
features = datasets.Features(
|
143 |
+
{
|
144 |
+
"doc_id": Value("int32"), # The document's S2ORC ID.
|
145 |
+
"title": Value("string"), # The title.
|
146 |
+
"abstract": [Value("string")], # The abstract, written as a list of sentences.
|
147 |
+
"structured": Value("bool"), # Indicator for whether this is a structured abstract.
|
148 |
+
}
|
149 |
+
)
|
150 |
+
|
151 |
+
elif self.config.name == "scifact_claims_source":
|
152 |
+
features = datasets.Features(
|
153 |
+
{
|
154 |
+
"id": Value("int32"), # An integer claim ID.
|
155 |
+
"claim": Value("string"), # The text of the claim.
|
156 |
+
"evidences": [
|
157 |
+
{
|
158 |
+
"doc_id": Value("int32"), # source doc_id for evidence
|
159 |
+
"sentence_ids": [Value("int32")], # sentence ids from doc_id
|
160 |
+
"label": Value("string"), # SUPPORT or CONTRADICT
|
161 |
+
},
|
162 |
+
],
|
163 |
+
"cited_doc_ids": [Value("int32")], # The claim's "cited documents".
|
164 |
+
}
|
165 |
+
)
|
166 |
+
|
167 |
+
else:
|
168 |
+
raise NotImplementedError(
|
169 |
+
f"{self.config.name} config not implemented"
|
170 |
+
)
|
171 |
+
|
172 |
+
elif self.config.schema == "bigbio_pairs":
|
173 |
+
features = pairs.features
|
174 |
+
|
175 |
+
else:
|
176 |
+
raise NotImplementedError(f"{self.config.schema} schema not implemented")
|
177 |
+
|
178 |
+
return datasets.DatasetInfo(
|
179 |
+
description=_DESCRIPTION[self.config.name],
|
180 |
+
features=features,
|
181 |
+
homepage=_HOMEPAGE,
|
182 |
+
license=str(_LICENSE),
|
183 |
+
citation=_CITATION,
|
184 |
+
)
|
185 |
+
|
186 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
187 |
+
urls = _URLS[_DATASETNAME]
|
188 |
+
self.config.data_dir = dl_manager.download_and_extract(urls)
|
189 |
+
|
190 |
+
if self.config.name == "scifact_corpus_source":
|
191 |
+
return [
|
192 |
+
datasets.SplitGenerator(
|
193 |
+
name=datasets.Split.TRAIN,
|
194 |
+
gen_kwargs={
|
195 |
+
"filepath": os.path.join(
|
196 |
+
self.config.data_dir, "data", "corpus.jsonl"
|
197 |
+
),
|
198 |
+
"split": "train",
|
199 |
+
},
|
200 |
+
),
|
201 |
+
]
|
202 |
+
|
203 |
+
# the test split is only returned in source schema
|
204 |
+
# this is b/c it only has claims with no cited docs or evidence
|
205 |
+
# the bigbio implementation of this dataset requires
|
206 |
+
# cited docs or evidence to construct samples
|
207 |
+
elif self.config.name == "scifact_claims_source":
|
208 |
+
return [
|
209 |
+
datasets.SplitGenerator(
|
210 |
+
name=datasets.Split.TRAIN,
|
211 |
+
gen_kwargs={
|
212 |
+
"filepath": os.path.join(
|
213 |
+
self.config.data_dir, "data", "claims_train.jsonl"
|
214 |
+
),
|
215 |
+
"split": "train",
|
216 |
+
},
|
217 |
+
),
|
218 |
+
datasets.SplitGenerator(
|
219 |
+
name=datasets.Split.VALIDATION,
|
220 |
+
gen_kwargs={
|
221 |
+
"filepath": os.path.join(
|
222 |
+
self.config.data_dir, "data", "claims_dev.jsonl"
|
223 |
+
),
|
224 |
+
"split": "dev",
|
225 |
+
},
|
226 |
+
),
|
227 |
+
datasets.SplitGenerator(
|
228 |
+
name=datasets.Split.TEST,
|
229 |
+
gen_kwargs={
|
230 |
+
"filepath": os.path.join(
|
231 |
+
self.config.data_dir, "data", "claims_test.jsonl"
|
232 |
+
),
|
233 |
+
"split": "test",
|
234 |
+
},
|
235 |
+
),
|
236 |
+
]
|
237 |
+
|
238 |
+
elif self.config.name in [
|
239 |
+
"scifact_rationale_bigbio_pairs",
|
240 |
+
"scifact_labelprediction_bigbio_pairs",
|
241 |
+
]:
|
242 |
+
return [
|
243 |
+
datasets.SplitGenerator(
|
244 |
+
name=datasets.Split.TRAIN,
|
245 |
+
gen_kwargs={
|
246 |
+
"filepath": os.path.join(
|
247 |
+
self.config.data_dir, "data", "claims_train.jsonl"
|
248 |
+
),
|
249 |
+
"split": "train",
|
250 |
+
},
|
251 |
+
),
|
252 |
+
datasets.SplitGenerator(
|
253 |
+
name=datasets.Split.VALIDATION,
|
254 |
+
gen_kwargs={
|
255 |
+
"filepath": os.path.join(
|
256 |
+
self.config.data_dir, "data", "claims_dev.jsonl"
|
257 |
+
),
|
258 |
+
"split": "dev",
|
259 |
+
},
|
260 |
+
),
|
261 |
+
]
|
262 |
+
|
263 |
+
|
264 |
+
def _source_generate_examples(self, filepath, split) -> Tuple[str, Dict[str, str]]:
|
265 |
+
|
266 |
+
# here we just read corpus.jsonl and return the abstracts
|
267 |
+
if self.config.name == "scifact_corpus_source":
|
268 |
+
with open(filepath) as fp:
|
269 |
+
for id_, row in enumerate(fp.readlines()):
|
270 |
+
data = json.loads(row)
|
271 |
+
yield id_, {
|
272 |
+
"doc_id": int(data["doc_id"]),
|
273 |
+
"title": data["title"],
|
274 |
+
"abstract": data["abstract"],
|
275 |
+
"structured": data["structured"],
|
276 |
+
}
|
277 |
+
|
278 |
+
# here we are reading one of claims_(train|dev|test).jsonl
|
279 |
+
elif self.config.name == "scifact_claims_source":
|
280 |
+
|
281 |
+
# claims_test.jsonl only has "id" and "claim" keys
|
282 |
+
# claims_train.jsonl and claims_dev.jsonl sometimes have evidence
|
283 |
+
with open(filepath) as fp:
|
284 |
+
for id_, row in enumerate(fp.readlines()):
|
285 |
+
data = json.loads(row)
|
286 |
+
evidences_dict = data.get("evidence", {})
|
287 |
+
evidences_list = []
|
288 |
+
for doc_id, sent_lbl_list in evidences_dict.items():
|
289 |
+
for sent_lbl_dict in sent_lbl_list:
|
290 |
+
evidence = {
|
291 |
+
"doc_id": doc_id,
|
292 |
+
"sentence_ids": sent_lbl_dict["sentences"],
|
293 |
+
"label": sent_lbl_dict["label"],
|
294 |
+
}
|
295 |
+
evidences_list.append(evidence)
|
296 |
+
|
297 |
+
yield id_, {
|
298 |
+
"id": data["id"],
|
299 |
+
"claim": data["claim"],
|
300 |
+
"evidences": evidences_list,
|
301 |
+
"cited_doc_ids": data.get("cited_doc_ids", []),
|
302 |
+
}
|
303 |
+
|
304 |
+
|
305 |
+
def _bigbio_generate_examples(self, filepath, split) -> Tuple[str, Dict[str, str]]:
|
306 |
+
"""
|
307 |
+
Here we always create one sample per sentence group.
|
308 |
+
Any sentence group in an evidence attribute will have
|
309 |
+
a label in {"rationale"} for the rationale task or
|
310 |
+
in {"SUPPORT", "CONTRADICT"} for the labelprediction task.
|
311 |
+
All other sentences will have either a "not_rationale"
|
312 |
+
label or a "NOINFO" label depending on the task.
|
313 |
+
"""
|
314 |
+
|
315 |
+
# read corpus (one row per abstract)
|
316 |
+
corpus_file_path = os.path.join(self.config.data_dir, "data", "corpus.jsonl")
|
317 |
+
df_corpus = pd.read_json(corpus_file_path, lines=True)
|
318 |
+
|
319 |
+
# create one row per sentence and create sentence index
|
320 |
+
df_sents = df_corpus.explode('abstract')
|
321 |
+
df_sents = df_sents.rename(columns={"abstract": "sentence"})
|
322 |
+
df_sents['sent_num'] = df_sents.groupby('doc_id').transform('cumcount')
|
323 |
+
df_sents['doc_sent_id'] = df_sents.apply(lambda x: f"{x['doc_id']}-{x['sent_num']}", axis=1)
|
324 |
+
|
325 |
+
# read claims
|
326 |
+
df_claims = pd.read_json(filepath, lines=True)
|
327 |
+
|
328 |
+
|
329 |
+
# join claims to corpus
|
330 |
+
for _, claim_row in df_claims.iterrows():
|
331 |
+
|
332 |
+
evidence = claim_row['evidence']
|
333 |
+
cited_doc_ids = set(claim_row['cited_doc_ids'])
|
334 |
+
evidence_doc_ids = set([int(doc_id) for doc_id in evidence.keys()])
|
335 |
+
|
336 |
+
# assert all evidence doc IDs are in cited_doc_ids
|
337 |
+
assert len(evidence_doc_ids - cited_doc_ids) == 0
|
338 |
+
|
339 |
+
# this will have all abstract sentences from cited docs
|
340 |
+
df_claim_sents = df_sents[df_sents['doc_id'].isin(cited_doc_ids)]
|
341 |
+
|
342 |
+
# create all sentence samples as NOINFO then fix
|
343 |
+
noinfo_samples = {}
|
344 |
+
for _, row in df_claim_sents.iterrows():
|
345 |
+
sample = {
|
346 |
+
"claim": claim_row["claim"],
|
347 |
+
"claim_id": claim_row["id"],
|
348 |
+
"doc_id": row['doc_id'],
|
349 |
+
"sentence_ids": (row['sent_num'],),
|
350 |
+
"doc_sent_ids": (row['doc_sent_id'],),
|
351 |
+
"span": row['sentence'].strip(),
|
352 |
+
"label": "NOINFO",
|
353 |
+
}
|
354 |
+
noinfo_samples[sample["doc_sent_ids"]] = sample
|
355 |
+
|
356 |
+
# create evidence samples and remove from noinfo samples as we go
|
357 |
+
evidence_samples = []
|
358 |
+
for doc_id_str, sent_lbl_list in evidence.items():
|
359 |
+
doc_id = int(doc_id_str)
|
360 |
+
|
361 |
+
for sent_lbl_dict in sent_lbl_list:
|
362 |
+
sent_ids = sent_lbl_dict['sentences']
|
363 |
+
doc_sent_ids = [f"{doc_id}-{sent_id}" for sent_id in sent_ids]
|
364 |
+
df_evi = df_claim_sents[df_claim_sents['doc_sent_id'].isin(doc_sent_ids)]
|
365 |
+
|
366 |
+
sample = {
|
367 |
+
"claim": claim_row["claim"],
|
368 |
+
"claim_id": claim_row["id"],
|
369 |
+
"doc_id": doc_id,
|
370 |
+
"sentence_ids": tuple(sent_ids),
|
371 |
+
"doc_sent_ids": tuple(doc_sent_ids),
|
372 |
+
"span": " ".join([el.strip() for el in df_evi["sentence"].values]),
|
373 |
+
"label": sent_lbl_dict["label"],
|
374 |
+
}
|
375 |
+
evidence_samples.append(sample)
|
376 |
+
for doc_sent_id in doc_sent_ids:
|
377 |
+
del noinfo_samples[(doc_sent_id,)]
|
378 |
+
|
379 |
+
# combine all sample and put back in sentence order
|
380 |
+
all_samples = evidence_samples + list(noinfo_samples.values())
|
381 |
+
all_samples = sorted(all_samples, key=lambda x: (x['doc_id'], x['sentence_ids'][0]))
|
382 |
+
|
383 |
+
# add a unique ID
|
384 |
+
for _id, sample in enumerate(all_samples):
|
385 |
+
sample["id"] = f"{_id}-{sample['claim_id']}-{sample['doc_id']}-{sample['sentence_ids'][0]}"
|
386 |
+
|
387 |
+
RATIONALE_LABEL_MAP = {
|
388 |
+
"SUPPORT": "rationale",
|
389 |
+
"CONTRADICT": "rationale",
|
390 |
+
"NOINFO": "not_rationale",
|
391 |
+
}
|
392 |
+
|
393 |
+
if self.config.name == "scifact_rationale_bigbio_pairs":
|
394 |
+
for sample in all_samples:
|
395 |
+
yield sample['id'], {
|
396 |
+
"id": sample["id"],
|
397 |
+
"document_id": sample["doc_id"],
|
398 |
+
"text_1": sample["claim"],
|
399 |
+
"text_2": sample["span"],
|
400 |
+
"label": RATIONALE_LABEL_MAP[sample['label']],
|
401 |
+
}
|
402 |
+
|
403 |
+
elif self.config.name == "scifact_labelprediction_bigbio_pairs":
|
404 |
+
for sample in all_samples:
|
405 |
+
yield sample['id'], {
|
406 |
+
"id": sample["id"],
|
407 |
+
"document_id": sample["doc_id"],
|
408 |
+
"text_1": sample["claim"],
|
409 |
+
"text_2": sample["span"],
|
410 |
+
"label": sample['label'],
|
411 |
+
}
|
412 |
+
|
413 |
+
def _generate_examples(self, filepath, split) -> Tuple[int, dict]:
|
414 |
+
|
415 |
+
if "source" in self.config.name:
|
416 |
+
for sample in self._source_generate_examples(filepath, split):
|
417 |
+
yield sample
|
418 |
+
|
419 |
+
elif "bigbio" in self.config.name:
|
420 |
+
for sample in self._bigbio_generate_examples(filepath, split):
|
421 |
+
yield sample
|