Commit
·
a4a0452
1
Parent(s):
0d00c73
upload hubscripts/verspoor_2013_hub.py to hub from bigbio repo
Browse files- verspoor_2013.py +266 -0
verspoor_2013.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
This dataset contains annotations for a small corpus of full text journal
|
18 |
+
publications on the subject of inherited colorectal cancer. It is suitable for
|
19 |
+
Named Entity Recognition and Relation Extraction tasks. It uses the Variome
|
20 |
+
Annotation Schema, a schema that aims to capture the core concepts and
|
21 |
+
relations relevant to cataloguing and interpreting human genetic variation and
|
22 |
+
its relationship to disease, as described in the published literature. The
|
23 |
+
schema was inspired by the needs of the database curators of the International
|
24 |
+
Society for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is
|
25 |
+
intended to have application to genetic variation information in a range of
|
26 |
+
diseases.
|
27 |
+
"""
|
28 |
+
|
29 |
+
from pathlib import Path
|
30 |
+
from shutil import rmtree
|
31 |
+
from typing import Dict, List, Tuple
|
32 |
+
|
33 |
+
import datasets
|
34 |
+
|
35 |
+
from .bigbiohub import kb_features
|
36 |
+
from .bigbiohub import BigBioConfig
|
37 |
+
from .bigbiohub import Tasks
|
38 |
+
|
39 |
+
_LANGUAGES = ['English']
|
40 |
+
_PUBMED = True
|
41 |
+
_LOCAL = False
|
42 |
+
_CITATION = """\
|
43 |
+
@article{verspoor2013annotating,
|
44 |
+
title = {Annotating the biomedical literature for the human variome},
|
45 |
+
author = {
|
46 |
+
Verspoor, Karin and Jimeno Yepes, Antonio and Cavedon, Lawrence and
|
47 |
+
McIntosh, Tara and Herten-Crabb, Asha and Thomas, Zo{"e} and Plazzer,
|
48 |
+
John-Paul
|
49 |
+
},
|
50 |
+
year = 2013,
|
51 |
+
journal = {Database},
|
52 |
+
publisher = {Oxford Academic},
|
53 |
+
volume = 2013
|
54 |
+
}
|
55 |
+
"""
|
56 |
+
|
57 |
+
_DATASETNAME = "verspoor_2013"
|
58 |
+
_DISPLAYNAME = "Verspoor 2013"
|
59 |
+
|
60 |
+
_DESCRIPTION = """\
|
61 |
+
This dataset contains annotations for a small corpus of full text journal \
|
62 |
+
publications on the subject of inherited colorectal cancer. It is suitable for \
|
63 |
+
Named Entity Recognition and Relation Extraction tasks. It uses the Variome \
|
64 |
+
Annotation Schema, a schema that aims to capture the core concepts and \
|
65 |
+
relations relevant to cataloguing and interpreting human genetic variation and \
|
66 |
+
its relationship to disease, as described in the published literature. The \
|
67 |
+
schema was inspired by the needs of the database curators of the International \
|
68 |
+
Society for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is \
|
69 |
+
intended to have application to genetic variation information in a range of \
|
70 |
+
diseases.
|
71 |
+
"""
|
72 |
+
|
73 |
+
|
74 |
+
_HOMEPAGE = "NA"
|
75 |
+
|
76 |
+
_LICENSE = 'License information unavailable'
|
77 |
+
|
78 |
+
_URLS = ["http://github.com/rockt/SETH/zipball/master/"]
|
79 |
+
|
80 |
+
_SUPPORTED_TASKS = [
|
81 |
+
Tasks.NAMED_ENTITY_RECOGNITION,
|
82 |
+
Tasks.RELATION_EXTRACTION,
|
83 |
+
]
|
84 |
+
|
85 |
+
_SOURCE_VERSION = "1.0.0"
|
86 |
+
|
87 |
+
_BIGBIO_VERSION = "1.0.0"
|
88 |
+
|
89 |
+
|
90 |
+
class Verspoor2013Dataset(datasets.GeneratorBasedBuilder):
|
91 |
+
"""\
|
92 |
+
This dataset contains annotations for a small corpus of full text journal publications
|
93 |
+
on the subject of inherited colorectal cancer. It is suitable for Named Entity Recognition and
|
94 |
+
Relation Extraction tasks. It uses the Variome Annotation Schema, a schema that aims to
|
95 |
+
capture the core concepts and relations relevant to cataloguing and interpreting human
|
96 |
+
genetic variation and its relationship to disease, as described in the published literature.
|
97 |
+
The schema was inspired by the needs of the database curators of the International Society
|
98 |
+
for Gastrointestinal Hereditary Tumours (InSiGHT) database, but is intended to have
|
99 |
+
application to genetic variation information in a range of diseases.
|
100 |
+
"""
|
101 |
+
|
102 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
103 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
104 |
+
|
105 |
+
BUILDER_CONFIGS = [
|
106 |
+
BigBioConfig(
|
107 |
+
name="verspoor_2013_source",
|
108 |
+
version=SOURCE_VERSION,
|
109 |
+
description="verspoor_2013 source schema",
|
110 |
+
schema="source",
|
111 |
+
subset_id="verspoor_2013",
|
112 |
+
),
|
113 |
+
BigBioConfig(
|
114 |
+
name="verspoor_2013_bigbio_kb",
|
115 |
+
version=BIGBIO_VERSION,
|
116 |
+
description="verspoor_2013 BigBio schema",
|
117 |
+
schema="bigbio_kb",
|
118 |
+
subset_id="verspoor_2013",
|
119 |
+
),
|
120 |
+
]
|
121 |
+
|
122 |
+
DEFAULT_CONFIG_NAME = "verspoor_2013_source"
|
123 |
+
|
124 |
+
def _info(self) -> datasets.DatasetInfo:
|
125 |
+
|
126 |
+
if self.config.schema == "source":
|
127 |
+
features = datasets.Features(
|
128 |
+
{
|
129 |
+
"id": datasets.Value("string"),
|
130 |
+
"document_id": datasets.Value("string"),
|
131 |
+
"text": datasets.Value("string"),
|
132 |
+
"text_bound_annotations": [ # T line in brat, e.g. type or event trigger
|
133 |
+
{
|
134 |
+
"offsets": datasets.Sequence([datasets.Value("int32")]),
|
135 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
136 |
+
"type": datasets.Value("string"),
|
137 |
+
"id": datasets.Value("string"),
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"events": [ # E line in brat
|
141 |
+
{
|
142 |
+
"trigger": datasets.Value(
|
143 |
+
"string"
|
144 |
+
), # refers to the text_bound_annotation of the trigger,
|
145 |
+
"id": datasets.Value("string"),
|
146 |
+
"type": datasets.Value("string"),
|
147 |
+
"arguments": datasets.Sequence(
|
148 |
+
{
|
149 |
+
"role": datasets.Value("string"),
|
150 |
+
"ref_id": datasets.Value("string"),
|
151 |
+
}
|
152 |
+
),
|
153 |
+
}
|
154 |
+
],
|
155 |
+
"relations": [ # R line in brat
|
156 |
+
{
|
157 |
+
"id": datasets.Value("string"),
|
158 |
+
"head": {
|
159 |
+
"ref_id": datasets.Value("string"),
|
160 |
+
"role": datasets.Value("string"),
|
161 |
+
},
|
162 |
+
"tail": {
|
163 |
+
"ref_id": datasets.Value("string"),
|
164 |
+
"role": datasets.Value("string"),
|
165 |
+
},
|
166 |
+
"type": datasets.Value("string"),
|
167 |
+
}
|
168 |
+
],
|
169 |
+
"equivalences": [ # Equiv line in brat
|
170 |
+
{
|
171 |
+
"id": datasets.Value("string"),
|
172 |
+
"ref_ids": datasets.Sequence(datasets.Value("string")),
|
173 |
+
}
|
174 |
+
],
|
175 |
+
"attributes": [ # M or A lines in brat
|
176 |
+
{
|
177 |
+
"id": datasets.Value("string"),
|
178 |
+
"type": datasets.Value("string"),
|
179 |
+
"ref_id": datasets.Value("string"),
|
180 |
+
"value": datasets.Value("string"),
|
181 |
+
}
|
182 |
+
],
|
183 |
+
"normalizations": [ # N lines in brat
|
184 |
+
{
|
185 |
+
"id": datasets.Value("string"),
|
186 |
+
"type": datasets.Value("string"),
|
187 |
+
"ref_id": datasets.Value("string"),
|
188 |
+
"resource_name": datasets.Value(
|
189 |
+
"string"
|
190 |
+
), # Name of the resource, e.g. "Wikipedia"
|
191 |
+
"cuid": datasets.Value(
|
192 |
+
"string"
|
193 |
+
), # ID in the resource, e.g. 534366
|
194 |
+
"text": datasets.Value(
|
195 |
+
"string"
|
196 |
+
), # Human readable description/name of the entity, e.g. "Barack Obama"
|
197 |
+
}
|
198 |
+
],
|
199 |
+
},
|
200 |
+
)
|
201 |
+
|
202 |
+
elif self.config.schema == "bigbio_kb":
|
203 |
+
features = kb_features
|
204 |
+
|
205 |
+
return datasets.DatasetInfo(
|
206 |
+
description=_DESCRIPTION,
|
207 |
+
features=features,
|
208 |
+
homepage=_HOMEPAGE,
|
209 |
+
license=str(_LICENSE),
|
210 |
+
citation=_CITATION,
|
211 |
+
)
|
212 |
+
|
213 |
+
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
|
214 |
+
"""Returns SplitGenerators."""
|
215 |
+
|
216 |
+
# Download gets entire git repo containing unused data from other datasets
|
217 |
+
repo_dir = Path(dl_manager.download_and_extract(_URLS[0]))
|
218 |
+
data_dir = repo_dir / "data"
|
219 |
+
data_dir.mkdir(exist_ok=True)
|
220 |
+
|
221 |
+
# Find the relevant files from Verspor2013 and move them to a new directory
|
222 |
+
verspoor_files = repo_dir.glob("*/*/*Verspoor2013/**/*")
|
223 |
+
for file in verspoor_files:
|
224 |
+
if file.is_file() and "readme" not in str(file):
|
225 |
+
file.rename(data_dir / file.name)
|
226 |
+
|
227 |
+
# Delete all unused files and directories from the original download
|
228 |
+
for x in repo_dir.glob("[!data]*"):
|
229 |
+
if x.is_file():
|
230 |
+
x.unlink()
|
231 |
+
elif x.is_dir():
|
232 |
+
rmtree(x)
|
233 |
+
|
234 |
+
data_files = {"text_files": list(data_dir.glob("*.txt"))}
|
235 |
+
|
236 |
+
return [
|
237 |
+
datasets.SplitGenerator(
|
238 |
+
name=datasets.Split.TRAIN,
|
239 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
240 |
+
gen_kwargs={
|
241 |
+
"data_files": data_files,
|
242 |
+
"split": "train",
|
243 |
+
},
|
244 |
+
)
|
245 |
+
]
|
246 |
+
|
247 |
+
def _generate_examples(self, data_files, split: str) -> Tuple[int, Dict]:
|
248 |
+
"""Yields examples as (key, example) tuples."""
|
249 |
+
|
250 |
+
if self.config.schema == "source":
|
251 |
+
txt_files = data_files["text_files"]
|
252 |
+
for guid, txt_file in enumerate(txt_files):
|
253 |
+
example = parsing.parse_brat_file(txt_file)
|
254 |
+
example["id"] = str(guid)
|
255 |
+
yield guid, example
|
256 |
+
|
257 |
+
elif self.config.schema == "bigbio_kb":
|
258 |
+
txt_files = data_files["text_files"]
|
259 |
+
for guid, txt_file in enumerate(txt_files):
|
260 |
+
example = parsing.brat_parse_to_bigbio_kb(
|
261 |
+
parsing.parse_brat_file(txt_file)
|
262 |
+
)
|
263 |
+
example["id"] = str(guid)
|
264 |
+
yield guid, example
|
265 |
+
else:
|
266 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|