markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Setting limitsNow, we want to space the axes to see all the data points | plt.figure(figsize=(10, 6), dpi=80)
plt.plot(x, c, color="blue", linewidth=2.5, linestyle="-")
plt.plot(x, s, color="red", linewidth=2.5, linestyle="solid")
plt.xlim(x.min() * 1.1, x.max() * 1.1)
plt.ylim(c.min() * 1.1, c.max() * 1.1) | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
Setting ticksCurrent ticks are not ideal because they do not show the interesting values ($+/-\pi$, $+/-\pi/2$) for sine and cosine. | plt.figure(figsize=(10, 6), dpi=80)
plt.plot(x, c, color="blue", linewidth=2.5, linestyle="-")
plt.plot(x, s, color="red", linewidth=2.5, linestyle="solid")
plt.xlim(x.min() * 1.1, x.max() * 1.1)
plt.ylim(c.min() * 1.1, c.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
plt.yticks([-1, 0, +1]) | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
Setting tick labels* Ticks are correctly placed but their labels are not very explicit* We can guess that 3.142 is $\pi$, but it would be better to make it explicit* When we set tick values, we can also provide a corresponding label in the second argument list* We can use $\LaTeX$ when defining the labels | plt.figure(figsize=(10, 6), dpi=80)
plt.plot(x, c, color="blue", linewidth=2.5, linestyle="-")
plt.plot(x, s, color="red", linewidth=2.5, linestyle="solid")
plt.xlim(x.min() * 1.1, x.max() * 1.1)
plt.ylim(c.min() * 1.1, c.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
['$-\pi$', '$-\pi/2$', '$0$', '$+\pi/2$', '$+\pi$'])
plt.yticks([-1, 0, +1], ['$-1$', '$0$', '$+1$']) | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
Moving spines* **Spines** are the lines connecting the axis tick marks and noting the boundaries of the data area.* Spines can be placed at arbitrary positions* Until now, they are on the border of the axis * We want to have them in the middle* There are four of them: top, bottom, left, right* Therefore, the top and the right will be discarded by setting their color to `none` * The bottom and the left ones will be moved to coordinate 0 in data space coordinates | plt.figure(figsize=(10, 6), dpi=80)
plt.plot(x, c, color="blue", linewidth=2.5, linestyle="-")
plt.plot(x, s, color="red", linewidth=2.5, linestyle="solid")
plt.xlim(x.min() * 1.1, x.max() * 1.1)
plt.ylim(c.min() * 1.1, c.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], ['$-\pi$', '$-\pi/2$', '$0$', '$+\pi/2$', '$+\pi$'])
plt.yticks([-1, 0, +1], ['$-1$', '$0$', '$+1$'])
ax = plt.gca() # 'get current axis'
# discard top and right spines
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0)) | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
Adding a legend * Let us include a legend in the upper right of the plot | plt.figure(figsize=(10, 6), dpi=80)
plt.plot(x, c, color="blue", linewidth=2.5, linestyle="-",
label="cosine")
plt.plot(x, s, color="red", linewidth=2.5, linestyle="solid",
label="sine")
plt.xlim(x.min() * 1.1, x.max() * 1.1)
plt.ylim(c.min() * 1.1, c.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], ['$-\pi$', '$-\pi/2$', '$0$', '$+\pi/2$', '$+\pi$'])
plt.yticks([-1, 0, +1], ['$-1$', '$0$', '$+1$'])
ax = plt.gca() # 'get current axis'
# discard top and right spines
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.legend(loc='upper right') | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
Annotate some points* The `annotate` command allows us to include annotation in the plot* For instance, to annotate the value $\frac{2\pi}{3}$ of both the sine and the cosine, we have to: 1. draw a marker on the curve as well as a straight dotted line 2. use the annotate command to display some text with an arrow | plt.figure(figsize=(10, 6), dpi=80)
plt.plot(x, c, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(x, s, color="red", linewidth=2.5, linestyle="solid", label="sine")
plt.xlim(x.min() * 1.1, x.max() * 1.1)
plt.ylim(c.min() * 1.1, c.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], ['$-\pi$', '$-\pi/2$', '$0$', '$+\pi/2$', '$+\pi$'])
plt.yticks([-1, 0, +1], ['$-1$', '$0$', '$+1$'])
t = 2 * np.pi / 3
plt.plot([t, t], [0, np.cos(t)], color='blue', linewidth=2.5, linestyle="--")
plt.scatter([t, ], [np.cos(t), ], 50, color='blue')
plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$',
xy=(t, np.cos(t)), xycoords='data',
xytext=(-90, -50), textcoords='offset points',
fontsize=16,
arrowprops=dict(arrowstyle="->",
connectionstyle="arc3,rad=.2"))
plt.plot([t, t],[0, np.sin(t)], color='red', linewidth=2.5,
linestyle="--")
plt.scatter([t, ],[np.sin(t), ], 50, color='red')
plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
ax = plt.gca() # 'get current axis'
# discard top and right spines
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.legend(loc='upper left') | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
* The tick labels are now hardly visible because of the blue and red lines* We can make them bigger and we can also adjust their properties to be rendered on a semi-transparent white background* This will allow us to see both the data and the label | plt.figure(figsize=(10, 6), dpi=80)
plt.plot(x, c, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(x, s, color="red", linewidth=2.5, linestyle="solid", label="sine")
plt.xlim(x.min() * 1.1, x.max() * 1.1)
plt.ylim(c.min() * 1.1, c.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], ['$-\pi$', '$-\pi/2$', '$0$', '$+\pi/2$', '$+\pi$'])
plt.yticks([-1, 0, +1], ['$-1$', '$0$', '$+1$'])
t = 2 * np.pi / 3
plt.plot([t, t], [0, np.cos(t)], color='blue', linewidth=2.5, linestyle="--")
plt.scatter([t, ], [np.cos(t), ], 50, color='blue')
plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$',
xy=(t, np.cos(t)), xycoords='data',
xytext=(-90, -50), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.plot([t, t],[0, np.sin(t)], color='red', linewidth=2.5, linestyle="--")
plt.scatter([t, ],[np.sin(t), ], 50, color='red')
plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
ax = plt.gca() # 'get current axis'
# discard top and right spines
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.legend(loc='upper left')
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(16)
label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65)) | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
Scatter plots | n = 1024
x = np.random.normal(0, 1, n)
y = np.random.normal(0, 1, n)
t = np.arctan2(y, x)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.scatter(x, y, s=75, c=t, alpha=.5)
plt.xlim(-1.5, 1.5)
plt.xticks(())
plt.ylim(-1.5, 1.5)
plt.yticks(())
ax = plt.gca()
ax.spines['top'].set_color('none')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none') | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
Bar plots* Creates two bar plots overlying the same axis* Include the value of each bar | n = 12
xs = np.arange(n)
y1 = (1 - xs / float(n)) * np.random.uniform(0.5, 1.0, n)
y2 = (1 - xs / float(n)) * np.random.uniform(0.5, 1.0, n)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.bar(xs, +y1, facecolor='#9999ff', edgecolor='white')
plt.bar(xs, -y2, facecolor='#ff9999', edgecolor='white')
for x, y in zip(xs, y1):
plt.text(x + 0.4, y + 0.05, '%.2f' % y, ha='center', va= 'bottom')
for x, y in zip(xs, y2):
plt.text(x + 0.4, -y - 0.05, '%.2f' % y, ha='center', va= 'top')
plt.xlim(-.5, n)
plt.xticks(())
plt.ylim(-1.25, 1.25)
plt.yticks(())
## Images
image = np.random.rand(30, 30)
plt.imshow(image, cmap=plt.cm.hot)
plt.colorbar()
years, months, sales = np.loadtxt('data/carsales.csv', delimiter=',', skiprows=1, dtype=int, unpack=True) | _____no_output_____ | Apache-2.0 | 02-plotting-with-matplotlib.ipynb | theed-ml/notebooks |
ClassesFor more information on the magic methods of pytho classes, consult the docs: https://docs.python.org/3/reference/datamodel.html | class DumbClass:
""" This class is just meant to demonstrate the magic __repr__ method
"""
def __repr__(self):
""" I'm giving this method a docstring
"""
return("I'm representing an instance of my dumbclass")
dc = DumbClass()
print(dc)
dc
help(DumbClass)
class Stack:
""" A simple class implimenting some common features of Stack
objects
"""
def __init__(self, iterable=None):
""" Initializes Stack objects. If an iterable is provided,
add elements from the iterable to this Stack until the
iterable is exhausted
"""
self.head = None
self.size = 0
if(iterable is not None):
for item in iterable:
self.add(item)
def add(self, item):
""" Add an element to the top of the stack. This method will
modify self and return self.
"""
self.head = (item, self.head)
self.size += 1
return self
def pop(self):
""" remove the top item from the stack and return it
"""
if(len(self) > 0):
ret = self.head[0]
self.head = self.head[1]
self.size -= 1
return ret
return None
def __contains__(self, item):
""" Returns True if item is in self
"""
for i in self:
if(i == item):
return True
return False
def __len__(self):
""" Returns the number of items in self
"""
return self.size
def __iter__(self):
""" prepares this stack for iteration and returns self
"""
self.curr = self.head
return self
def __next__(self):
""" Returns items from the stack from top to bottom
"""
if(not hasattr(self, 'curr')):
iter(self)
if(self.curr is None):
raise StopIteration
else:
ret = self.curr[0]
self.curr = self.curr[1]
return ret
def __reversed__(self):
""" returns a copy of self with the stack turned upside
down
"""
return Stack(self)
def __add__(self, other):
""" Put self on top of other
"""
ret = Stack(reversed(other))
for item in reversed(self):
ret.add(item)
return ret
def __repr__(self):
""" Represent self as a string
"""
return f'Stack({str(list(self))})'
# Create a stack object and test some methods
x = Stack([3, 2])
print(x)
# adds an element to the top of the stack
print('\nLets add 1 to the stack')
x.add(1)
print(x)
# Removes the top most element
print('\nLets remove an item from the top of the stack')
item = x.pop()
print(item)
print(x)
# Removes the top most element
print('\nlets remove another item')
item = x.pop()
print(item)
print(x)
x = Stack([4,5,6])
# Because I implimented the __contains__ method,
# I can check if items are in stack objects
print(f'Does my stack contain 2? {2 in x}')
print(f'Does my stack contain 4? {4 in x}')
# Because I implimented the __len__ method,
# I can check how many items are in stack objects
print(f'How many elements are in my stack? {len(x)}')
# because my stack class has an __iter__ and __next__ methods
# I can iterate over stack objects
x = Stack([7,3,4])
print(f"Lets iterate over my stack : {x}")
for item in x:
print(item)
# Because my stack class has a __reversed__ method,
# I can easily reverse a stack object
print(f'I am flipping my stack upside down : {reversed(x)}')
# Because I implimented the __add__ method,
# I can add stacks together
x = Stack([4,5,6])
y = Stack([1,2,3])
print("I have two stacks")
print(f'x : {x}')
print(f'y : {y}')
print("Let's add them together")
print(f'x + y = {x + y}')
for item in (x + y):
print(item) | _____no_output_____ | MIT | .ipynb_checkpoints/12-4_review-checkpoint.ipynb | willdoucet/Classwork |
Using the SqlAlchemy ORMFor more information, check out the documentation : https://docs.sqlalchemy.org/en/latest/orm/tutorial.html | from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Float, ForeignKey
from sqlalchemy.orm import Session, relationship
import pymysql
pymysql.install_as_MySQLdb()
# Sets an object to utilize the default declarative base in SQL Alchemy
Base = declarative_base()
# Lets define the owners table/class
class Owners(Base):
__tablename__ = 'owners'
id = Column(Integer, primary_key=True)
name = Column(String(255))
phone_number = Column(String(255))
pets = relationship("Pets", back_populates="owner")
def __repr__(self):
return f"<Owners(id={self.id}, name='{self.name}', phone_number='{self.phone_number}')>"
# Lets define the pets table/class
class Pets(Base):
__tablename__ = 'pets'
id = Column(Integer, primary_key=True)
name = Column(String(255))
owner_id = Column(Integer, ForeignKey('owners.id'))
owner = relationship("Owners", back_populates="pets")
def __repr__(self):
return f"<Pets(id={self.id}, name='{self.name}', owner_id={self.owner_id})>"
# Lets connect to my database
# engine = create_engine("sqlite:///pets.sqlite")
engine = create_engine("mysql://root@localhost/review_db")
# conn = engine.connect()
Base.metadata.create_all(engine)
session = Session(bind=engine)
# Lets create me
me = Owners(name='Kenton', phone_number='867-5309')
session.add(me)
session.commit()
# Now lets add my dog
my_dog = Pets(name='Saxon', owner_id=me.id)
session.add(my_dog)
session.commit()
# We can query the tables using the session object from earlier
# Lets just get all the data
all_owners = list(session.query(Owners))
all_pets = list(session.query(Pets))
print(all_owners)
print(all_pets)
me = all_owners[0]
rio = all_pets[0]
# Because we are using an ORM and have defined relations,
# we can easily and intuitively access related data
print(me.pets)
print(rio.owner) | _____no_output_____ | MIT | .ipynb_checkpoints/12-4_review-checkpoint.ipynb | willdoucet/Classwork |
Estimation on real data using MSM | from consav import runtools
runtools.write_numba_config(disable=0,threads=4)
%matplotlib inline
%load_ext autoreload
%autoreload 2
# Local modules
from Model import RetirementClass
import figs
import SimulatedMinimumDistance as SMD
# Global modules
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Data | data = pd.read_excel('SASdata/moments.xlsx')
mom_data = data['mom'].to_numpy()
se = data['se'].to_numpy()
obs = data['obs'].to_numpy()
se = se/np.sqrt(obs)
se[se>0] = 1/se[se>0]
factor = np.ones(len(se))
factor[-15:] = 4
W = np.eye(len(se))*se*factor
cov = pd.read_excel('SASdata/Cov.xlsx')
Omega = cov*obs
Nobs = np.median(obs) | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Set up estimation | single_kwargs = {'simN': int(1e5), 'simT': 68-53+1}
Couple = RetirementClass(couple=True, single_kwargs=single_kwargs,
simN=int(1e5), simT=68-53+1)
Couple.solve()
Couple.simulate()
def mom_fun(Couple):
return SMD.MomFun(Couple)
est_par = ["alpha_0_male", "alpha_0_female", "sigma_eta", "pareto_w", "phi_0_male"]
smd = SMD.SimulatedMinimumDistance(Couple,mom_data,mom_fun,est_par=est_par) | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Estimate | theta0 = SMD.start(9,bounds=[(0,1), (0,1), (0.2,0.8), (0.2,0.8), (0,2)])
theta0
smd.MultiStart(theta0,W)
theta = smd.est
smd.MultiStart(theta0,W)
theta = smd.est | Iteration: 50 (11.08 minutes)
alpha_0_male=0.5044 alpha_0_female=0.4625 sigma_eta=0.8192 pareto_w=0.7542 phi_0_male=0.1227 -> 21.6723
Iteration: 100 (11.19 minutes)
alpha_0_male=0.5703 alpha_0_female=0.5002 sigma_eta=0.7629 pareto_w=0.7459 phi_0_male=0.1575 -> 17.7938
Iteration: 150 (10.73 minutes)
alpha_0_male=0.5546 alpha_0_female=0.5131 sigma_eta=0.6877 pareto_w=0.8166 phi_0_male=0.1905 -> 16.9717
Iteration: 200 (10.94 minutes)
alpha_0_male=0.5526 alpha_0_female=0.5128 sigma_eta=0.6891 pareto_w=0.8133 phi_0_male=0.1875 -> 16.9319
1 estimation:
success: True | feval: 248 | time: 54.8 min | obj: 16.927585558076142
start par: [0.551, 0.576, 0.596, 0.5, 1.241]
par: [0.55258074 0.51274232 0.68921531 0.81324937 0.18777072]
Iteration: 250 (11.3 minutes)
alpha_0_male=0.6206 alpha_0_female=0.5880 sigma_eta=0.4200 pareto_w=0.4980 phi_0_male=0.5590 -> 57.7093
Iteration: 300 (11.24 minutes)
alpha_0_male=0.5428 alpha_0_female=0.4145 sigma_eta=0.6379 pareto_w=0.5308 phi_0_male=0.3868 -> 22.4315
Iteration: 350 (10.62 minutes)
alpha_0_male=0.5777 alpha_0_female=0.5323 sigma_eta=0.7206 pareto_w=0.6119 phi_0_male=0.1712 -> 19.5532
Iteration: 400 (10.7 minutes)
alpha_0_male=0.5412 alpha_0_female=0.4850 sigma_eta=0.6265 pareto_w=0.7680 phi_0_male=0.1276 -> 17.5896
Iteration: 450 (11.15 minutes)
alpha_0_male=0.5727 alpha_0_female=0.5056 sigma_eta=0.6590 pareto_w=0.7641 phi_0_male=0.1026 -> 17.3178
Iteration: 500 (11.37 minutes)
alpha_0_male=0.5724 alpha_0_female=0.5112 sigma_eta=0.6671 pareto_w=0.7618 phi_0_male=0.1020 -> 17.2860
2 estimation:
success: True | feval: 300 | time: 66.3 min | obj: 17.27324442907804
start par: [0.591, 0.588, 0.42, 0.498, 0.559]
par: [0.57229758 0.5114954 0.66670532 0.7624101 0.1016371 ]
Iteration: 550 (11.27 minutes)
alpha_0_male=0.2415 alpha_0_female=0.5020 sigma_eta=0.5640 pareto_w=0.5470 phi_0_male=1.3920 -> 52.9243
Iteration: 600 (11.18 minutes)
alpha_0_male=0.3956 alpha_0_female=0.4874 sigma_eta=0.6780 pareto_w=0.6912 phi_0_male=0.2409 -> 26.3473
Iteration: 650 (11.25 minutes)
alpha_0_male=0.4919 alpha_0_female=0.5041 sigma_eta=0.6219 pareto_w=0.7558 phi_0_male=0.2084 -> 18.6088
Iteration: 700 (11.42 minutes)
alpha_0_male=0.5489 alpha_0_female=0.4931 sigma_eta=0.6267 pareto_w=0.7717 phi_0_male=0.1391 -> 17.4406
Iteration: 750 (10.88 minutes)
alpha_0_male=0.5477 alpha_0_female=0.4897 sigma_eta=0.6247 pareto_w=0.7747 phi_0_male=0.1398 -> 17.4092
Iteration: 800 (10.64 minutes)
alpha_0_male=0.5478 alpha_0_female=0.4898 sigma_eta=0.6248 pareto_w=0.7747 phi_0_male=0.1394 -> 17.3802
3 estimation:
success: True | feval: 253 | time: 56.0 min | obj: 17.38030688438767
start par: [0.23, 0.502, 0.564, 0.547, 1.392]
par: [0.54777719 0.4897951 0.62477554 0.77474538 0.13940557]
Iteration: 850 (10.52 minutes)
alpha_0_male=0.6309 alpha_0_female=0.4741 sigma_eta=0.8748 pareto_w=0.7275 phi_0_male=0.3000 -> 20.2731
Iteration: 900 (10.65 minutes)
alpha_0_male=0.5417 alpha_0_female=0.5320 sigma_eta=0.7344 pareto_w=0.8562 phi_0_male=0.3055 -> 17.2592
Iteration: 950 (10.64 minutes)
alpha_0_male=0.5331 alpha_0_female=0.5218 sigma_eta=0.7226 pareto_w=0.8497 phi_0_male=0.2874 -> 17.1254
Iteration: 1000 (10.59 minutes)
alpha_0_male=0.5359 alpha_0_female=0.5206 sigma_eta=0.7271 pareto_w=0.8505 phi_0_male=0.2736 -> 17.1173
Iteration: 1050 (10.68 minutes)
alpha_0_male=0.5358 alpha_0_female=0.5207 sigma_eta=0.7268 pareto_w=0.8501 phi_0_male=0.2741 -> 17.0704
4 estimation:
success: True | feval: 260 | time: 55.2 min | obj: 17.069749122995066
start par: [0.369, 0.367, 0.658, 0.431, 0.62]
par: [0.53580109 0.52075601 0.72683222 0.85007036 0.27418587]
Iteration: 1100 (10.73 minutes)
alpha_0_male=0.5503 alpha_0_female=0.5148 sigma_eta=0.6911 pareto_w=0.8155 phi_0_male=0.1885 -> 16.9585
Iteration: 1150 (10.81 minutes)
alpha_0_male=0.5525 alpha_0_female=0.5129 sigma_eta=0.6894 pareto_w=0.8134 phi_0_male=0.1879 -> 16.9468
Iteration: 1200 (10.89 minutes)
alpha_0_male=0.5525 alpha_0_female=0.5128 sigma_eta=0.6893 pareto_w=0.8134 phi_0_male=0.1879 -> 16.9224
final estimation:
success: True | feval: 142 | obj: 16.922410852892398
total estimation time: 4.4 hours
start par: [0.55258074 0.51274232 0.68921531 0.81324937 0.18777072]
par: [0.5524854 0.51284598 0.68929759 0.81336732 0.18791813]
| MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Save parameters | est_par.append('phi_0_female')
thetaN = list(theta)
thetaN.append(Couple.par.phi_0_male)
SMD.save_est(est_par,thetaN,name='baseline2') | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Standard errors | est_par = ["alpha_0_male", "alpha_0_female", "sigma_eta", "pareto_w", "phi_0_male"]
smd = SMD.SimulatedMinimumDistance(Couple,mom_data,mom_fun,est_par=est_par)
theta = list(SMD.load_est('baseline2').values())
theta = theta[:5]
smd.obj_fun(theta,W)
np.round(theta,3)
Nobs = np.quantile(obs,0.25)
smd.std_error(theta,Omega,W,Nobs,Couple.par.simN*2/Nobs)
# Nobs = lower quartile
np.round(smd.std,3)
# Nobs = lower quartile
np.round(smd.std,3)
Nobs = np.quantile(obs,0.25)
smd.std_error(theta,Omega,W,Nobs,Couple.par.simN*2/Nobs)
# Nobs = median
np.round(smd.std,3) | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Model fit | smd.obj_fun(theta,W)
jmom = pd.read_excel('SASdata/joint_moments_ad.xlsx')
for i in range(-2,3):
data = jmom[jmom.Age_diff==i]['ssh'].to_numpy()
plt.bar(np.arange(-7,8), data, label='Data')
plt.plot(np.arange(-7,8),SMD.joint_moments_ad(Couple,i),'k--', label='Predicted')
#plt.ylim(0,0.4)
plt.legend()
plt.show()
figs.MyPlot(figs.model_fit_marg(smd,0,0),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargWomenSingle2.png')
figs.MyPlot(figs.model_fit_marg(smd,1,0),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargMenSingle2.png')
figs.MyPlot(figs.model_fit_marg(smd,0,1),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargWomenCouple2.png')
figs.MyPlot(figs.model_fit_marg(smd,1,1),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargMenCouple2.png')
figs.model_fit_joint(smd).savefig('figs/ModelFit/Joint2')
theta[4] = 1
smd.obj_fun(theta,W)
dist1 = smd.mom_sim[44:]
theta[4] = 2
smd.obj_fun(theta,W)
dist2 = smd.mom_sim[44:]
theta[4] = 3
smd.obj_fun(theta,W)
dist3 = smd.mom_sim[44:]
dist_data = mom_data[44:]
figs.model_fit_joint_many(dist_data,dist1,dist2,dist3).savefig('figs/ModelFit/JointMany2') | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Sensitivity | est_par_tex = [r'$\alpha^m$', r'$\alpha^f$', r'$\sigma$', r'$\lambda$', r'$\phi$']
fixed_par = ['R', 'rho', 'beta', 'gamma', 'v',
'priv_pension_male', 'priv_pension_female', 'g_adjust', 'pi_adjust_m', 'pi_adjust_f']
fixed_par_tex = [r'$R$', r'$\rho$', r'$\beta$', r'$\gamma$', r'$v$',
r'$PPW^m$', r'$PPW^f$', r'$g$', r'$\pi^m$', r'$\pi^f$']
smd.recompute=True
smd.sensitivity(theta,W,fixed_par)
figs.sens_fig_tab(smd.sens2[:,:5],smd.sens2e[:,:5],theta,
est_par_tex,fixed_par_tex[:5]).savefig('figs/ModelFit/CouplePref2.png')
figs.sens_fig_tab(smd.sens2[:,5:],smd.sens2e[:,5:],theta,
est_par_tex,fixed_par_tex[5:]).savefig('figs/modelFit/CoupleCali2.png')
smd.recompute=True
smd.sensitivity(theta,W,fixed_par)
figs.sens_fig_tab(smd.sens2[:,:5],smd.sens2e[:,:5],theta,
est_par_tex,fixed_par_tex[:5]).savefig('figs/ModelFit/CouplePref.png')
figs.sens_fig_tab(smd.sens2[:,5:],smd.sens2e[:,5:],theta,
est_par_tex,fixed_par_tex[5:]).savefig('figs/modelFit/CoupleCali.png') | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Recalibrate model (phi=0) | Couple.par.phi_0_male = 0
Couple.par.phi_0_female = 0
est_par = ["alpha_0_male", "alpha_0_female", "sigma_eta", "pareto_w"]
smd = SMD.SimulatedMinimumDistance(Couple,mom_data,mom_fun,est_par=est_par)
theta0 = SMD.start(4,bounds=[(0,1), (0,1), (0.2,0.8), (0.2,0.8)])
smd.MultiStart(theta0,W)
theta = smd.est
est_par.append("phi_0_male")
est_par.append("phi_0_female")
theta = list(theta)
theta.append(Couple.par.phi_0_male)
theta.append(Couple.par.phi_0_male)
SMD.save_est(est_par,theta,name='phi0')
smd.obj_fun(theta,W)
figs.MyPlot(figs.model_fit_marg(smd,0,0),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargWomenSingle_phi0.png')
figs.MyPlot(figs.model_fit_marg(smd,1,0),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargMenSingle_phi0.png')
figs.MyPlot(figs.model_fit_marg(smd,0,1),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargWomenCouple_phi0.png')
figs.MyPlot(figs.model_fit_marg(smd,1,1),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargMenCoupleW_phi0.png')
figs.model_fit_joint(smd).savefig('figs/ModelFit/Joint_phi0') | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Recalibrate model (phi high) | Couple.par.phi_0_male = 1.187
Couple.par.phi_0_female = 1.671
Couple.par.pareto_w = 0.8
est_par = ["alpha_0_male", "alpha_0_female", "sigma_eta"]
smd = SMD.SimulatedMinimumDistance(Couple,mom_data,mom_fun,est_par=est_par)
theta0 = SMD.start(4,bounds=[(0.2,0.6), (0.2,0.6), (0.4,0.8)])
theta0
smd.MultiStart(theta0,W)
theta = smd.est
est_par.append("phi_0_male")
est_par.append("phi_0_female")
theta = list(theta)
theta.append(Couple.par.phi_0_male)
theta.append(Couple.par.phi_0_male)
SMD.save_est(est_par,theta,name='phi_high')
smd.obj_fun(theta,W)
figs.MyPlot(figs.model_fit_marg(smd,0,0),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargWomenSingle_phi_high.png')
figs.MyPlot(figs.model_fit_marg(smd,1,0),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargMenSingle_phi_high.png')
figs.MyPlot(figs.model_fit_marg(smd,0,1),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargWomenCouple_phi_high.png')
figs.MyPlot(figs.model_fit_marg(smd,1,1),ylim=[-0.01,0.4],linewidth=3).savefig('figs/ModelFit/MargMenCoupleW_phi_high.png')
figs.model_fit_joint(smd).savefig('figs/ModelFit/Joint_phi_high') | _____no_output_____ | MIT | Main/MSM_real.ipynb | mathiassunesen/Speciale_retirement |
Mais Exercícios de Redução de Dimensionalidade Baseado no livro "Python Data Science Handbook" de Jake VanderPlashttps://jakevdp.github.io/PythonDataScienceHandbook/Usando os dados de rostos do scikit-learn, utilizar as tecnicas de aprendizado de variedade para comparação. | from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people(min_faces_per_person=30)
faces.data.shape | _____no_output_____ | MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
A base de dados tem 2300 imagens de rostos com 2914 pixels cada (47x62)Vamos visualizar as primeiras 32 dessas imagens | import numpy as np
from numpy import random
from matplotlib import pyplot as plt
%matplotlib inline
fig, ax = plt.subplots(5, 8, subplot_kw=dict(xticks=[], yticks=[]))
for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='gray') | _____no_output_____ | MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Podemos ver se com redução de dimensionalidade é possível entender algumas das caraterísticas das imagens. | from sklearn.decomposition import PCA
model0 = PCA(n_components=0.95)
X_pca=model0.fit_transform(faces.data)
plt.plot(np.cumsum(model0.explained_variance_ratio_))
plt.xlabel('n components')
plt.ylabel('cumulative variance')
plt.grid(True)
print("Numero de componentes para 95% de variância preservada:",model0.n_components_) | Numero de componentes para 95% de variância preservada: 171
| MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Quer dizer que para ter 95% de variância preservada na dimensionalidade reduzida precisamos mais de 170 dimensões. As novas "coordenadas" podem ser vistas em quadros de 9x19 pixels |
def plot_faces(instances, **options):
fig, ax = plt.subplots(5, 8, subplot_kw=dict(xticks=[], yticks=[]))
sizex = 9
sizey = 19
images = [instance.reshape(sizex,sizey) for instance in instances]
for i,axi in enumerate(ax.flat):
axi.imshow(images[i], cmap = "gray", **options)
axi.axis("off")
| _____no_output_____ | MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Vamos visualizar a compressão dessas imagens | plot_faces(X_pca,aspect="auto") | _____no_output_____ | MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
A opção ```svd_solver=randomized``` faz o PCA achar as $d$ componentes principais mais rápido quando $d \ll n$, mas o $d$ é fixo. Tem alguma vantagem usar para compressão das imagens de rosto? Teste! Aplicar Isomap para vizualizar em 2D | from sklearn.manifold import Isomap
iso = Isomap(n_components=2)
X_iso = iso.fit_transform(faces.data)
X_iso.shape
from matplotlib import offsetbox
def plot_projection(data,proj,images=None,ax=None,thumb_frac=0.5,cmap="gray"):
ax = ax or plt.gca()
ax.plot(proj[:, 0], proj[:, 1], '.k')
if images is not None:
min_dist_2 = (thumb_frac * max(proj.max(0) - proj.min(0))) ** 2
shown_images = np.array([2 * proj.max(0)])
for i in range(data.shape[0]):
dist = np.sum((proj[i] - shown_images) ** 2, 1)
if np.min(dist) < min_dist_2:
# don't show points that are too close
continue
shown_images = np.vstack([shown_images, proj[i]])
imagebox = offsetbox.AnnotationBbox(
offsetbox.OffsetImage(images[i], cmap=cmap),
proj[i])
ax.add_artist(imagebox)
def plot_components(data, model, images=None, ax=None,
thumb_frac=0.05,cmap="gray"):
proj = model.fit_transform(data)
plot_projection(data,proj,images,ax,thumb_frac,cmap)
fig, ax = plt.subplots(figsize=(10, 10))
plot_projection(faces.data,X_iso,images=faces.images[:, ::2, ::2],thumb_frac=0.07)
ax.axis("off") | _____no_output_____ | MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
As imagens mais a direita são mais escuras que as da direita (seja iluminação ou cor da pele), as imagens mais embaixo estão orientadas com o rosto à esquerda e as de cima com o rosto à direita. Exercícios: 1. Aplicar LLE à base de dados dos rostos e visualizar em mapa 2D, em particular a versão "modificada" ([link](https://scikit-learn.org/stable/modules/manifold.htmlmodified-locally-linear-embedding))2. Aplicar t-SNE à base de dados dos rostos e visualizar em mapa 2D3. Escolher mais uma implementação de aprendizado de variedade do Scikit-Learn ([link](https://scikit-learn.org/stable/modules/manifold.html)) e aplicar ao mesmo conjunto. (*Hessian, LTSA, Spectral*)Qual funciona melhor? Adicione contador de tempo para comparar a duração de cada ajuste. Kernel PCA e sequências Vamos ver novamente o exemplo do rocambole | import numpy as np
from numpy import random
from matplotlib import pyplot as plt
%matplotlib inline
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import make_swiss_roll
X, t = make_swiss_roll(n_samples=1000, noise=0.2, random_state=42)
axes = [-11.5, 14, -2, 23, -12, 15]
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=t, cmap="plasma")
ax.view_init(10, -70)
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)
ax.set_xlim(axes[0:2])
ax.set_ylim(axes[2:4])
ax.set_zlim(axes[4:6])
| _____no_output_____ | MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Como foi no caso do SVM, pode se aplicar uma transformação de *kernel*, para ter um novo espaço de *features* onde pode ser aplicado o PCA. Embaixo o exemplo de PCA com kernel linear (equiv. a aplicar o PCA), RBF (*radial basis function*) e *sigmoide* (i.e. logístico). | from sklearn.decomposition import KernelPCA
lin_pca = KernelPCA(n_components = 2, kernel="linear", fit_inverse_transform=True)
rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=0.0433, fit_inverse_transform=True)
sig_pca = KernelPCA(n_components = 2, kernel="sigmoid", gamma=0.001, coef0=1, fit_inverse_transform=True)
plt.figure(figsize=(11, 4))
for subplot, pca, title in ((131, lin_pca, "Linear kernel"), (132, rbf_pca, "RBF kernel, $\gamma=0.04$"), (133, sig_pca, "Sigmoid kernel, $\gamma=10^{-3}, r=1$")):
X_reduced = pca.fit_transform(X)
if subplot == 132:
X_reduced_rbf = X_reduced
plt.subplot(subplot)
plt.title(title, fontsize=14)
plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=t, cmap=plt.cm.hot)
plt.xlabel("$z_1$", fontsize=18)
if subplot == 131:
plt.ylabel("$z_2$", fontsize=18, rotation=0)
plt.grid(True)
| /usr/local/lib/python3.6/dist-packages/sklearn/utils/extmath.py:516: RuntimeWarning: invalid value encountered in multiply
v *= signs[:, np.newaxis]
/usr/local/lib/python3.6/dist-packages/sklearn/utils/extmath.py:516: RuntimeWarning: invalid value encountered in multiply
v *= signs[:, np.newaxis]
| MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Selecionar um Kernel e Otimizar HiperparâmetrosComo estos são algoritmos não supervisionados, no existe uma forma "obvia" de determinar a sua performance. Porém a redução de dimensionalidade muitas vezes é um passo preparatório para uma outra tarefa de aprendizado supervisionado. Nesse caso é possível usar o ```GridSearchCV``` para avaliar a melhor performance no passo seguinte, com um ```Pipeline```. A classificação será em base ao valor do ```t``` com limite arbitrário de 6.9. | from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
y = t>6.9
clf = Pipeline([
("kpca", KernelPCA(n_components=2)),
("log_reg", LogisticRegression(solver="liblinear"))
])
param_grid = [{
"kpca__gamma": np.linspace(0.03, 0.05, 10),
"kpca__kernel": ["rbf", "sigmoid"]
}]
grid_search = GridSearchCV(clf, param_grid, cv=3)
grid_search.fit(X, y)
print(grid_search.best_params_) | {'kpca__gamma': 0.043333333333333335, 'kpca__kernel': 'rbf'}
| MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Exercício :Varie o valor do corte em ```t``` e veja tem faz alguma diferência para o kernel e hiperparámetros ideais. Inverter a transformação e erro de Reconstrução Outra opção seria escolher o kernel e hiperparâmetros que tem o menor erro de reconstrução. O seguinte código, com opção ```fit_inverse_transform=True```, vai fazer junto com o kPCA um modelo de regressão com as instancias projetadas (```X_reduced```) de treino e as originais (```X```) de target. O resultado do ```inverse_transform``` será uma tentativa de reconstrução no espaço original . | rbf_pca = KernelPCA(n_components = 2, kernel="rbf", gamma=13./300.,
fit_inverse_transform=True)
X_reduced = rbf_pca.fit_transform(X)
X_preimage = rbf_pca.inverse_transform(X_reduced)
X_preimage.shape
axes = [-11.5, 14, -2, 23, -12, 15]
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(X_preimage[:, 0], X_preimage[:, 1], X_preimage[:, 2], c=t, cmap="plasma")
ax.view_init(10, -70)
ax.set_xlabel("$x_1$", fontsize=18)
ax.set_ylabel("$x_2$", fontsize=18)
ax.set_zlabel("$x_3$", fontsize=18)
ax.set_xlim(axes[0:2])
ax.set_ylim(axes[2:4])
ax.set_zlim(axes[4:6])
| _____no_output_____ | MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Então é possível computar o "erro" entre o dataset reconstruido e o original (MSE). | from sklearn.metrics import mean_squared_error as mse
print(mse(X,X_preimage)) | 32.79523578725337
| MIT | Exemplos_DR/Exercicios_DimensionalReduction.ipynb | UERJ-FISICA/ML4PPGF_UERJ |
Ejemplos aplicaciones de las distribuciones de probabilidad Ejemplo BinomialUn modelo de precio de opciones, el cual intente modelar el precio de un activo $S(t)$ en forma simplificada, en vez de usar ecuaciones diferenciales estocásticas. De acuerdo a este modelo simplificado, dado el precio del activo actual $S(0)=S_0$, el precio después de un paso de tiempo $\delta t$, denotado por $S(\delta t)$, puede ser ya sea $S_u=uS_0$ o $S_d=dS_0$, con probabilidades $p_u$ y $p_d$, respectivamente. Los subíndices $u$ y $p$ pueden ser interpretados como 'subida' y 'bajada', además consideramos cambios multiplicativos. Ahora imagine que el proces $S(t)$ es observado hasta el tiempo $T=n\cdot \delta t$ y que las subidas y bajadas del precio son independientes en todo el tiempo. Como hay $n$ pasos, el valor mas grande de $S(T)$ alcanzado es $S_0u^n$ y el valor más pequeño es $S_0d^n$. Note que valores intermedios serán de la forma $S_0u^md^{n-m}$ donde $m$ es el número de saltos de subidas realizadas por el activo y $n-m$ el número bajadas del activo. Observe que es irrelevante la secuencia exacta de subidas y bajadas del precio para determinar el precio final, es decir como los cambios multiplicativos conmutan: $S_0ud=S_0du$. Un simple modelo como el acá propuesto, puede representarse mediante un modelo binomial y se puede representar de la siguiente forma:Tal modelo es un poco conveniente para simples opciones de dimensión baja debido a que **(el diagrama puede crecer exponencialmente)**, cuando las recombinaciones mantienen una complejidad baja. Con este modelo podíamos intentar responder - Cúal es la probabilidad que $S(T)=S_0u^md^{(n-m)}$? - **Hablar como construir el modelo binomial** - $n,m,p \longrightarrow X\sim Bin(n,p)$ - PMF $\rightarrow P(X=m)={n \choose m}p^m(1-p)^{n-m}$ - Dibuje la Densidad de probabilidad para $n=30, p_1=0.2,p_2=0.4$ | # Importamos librerías a trabajar en todas las simulaciones
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as st # Librería estadística
from math import factorial as fac # Importo la operación factorial
from scipy.special import comb # Importamos la función combinatoria
%matplotlib inline
# Parámetros de la distribución
n = 30; p1=0.2; p2 = 0.4
m = np.arange(0,n)
n = n*np.ones(len(m))
# Distribución binomial creada
P = lambda p,n,m:comb(n,m)*p**m*(1-p)**(n-m)
# Distribución binomial del paquete de estadística
P2 = st.binom(n,p1).pmf(m)
# Comparación de función creada con función de python
plt.plot(P(p1,n,m),'o-',label='Función creada')
plt.stem(P2,'r--',label='Función de librería estadística')
plt.legend()
plt.title('Comparación de funciones')
plt.show()
# Grafica de pmf para el problema de costo de activos
plt.plot(P(p1,n,m),'o-.b',label='$p_1 = 0.2$')
plt.plot(st.binom(n,p2).pmf(m),'gv--',label='$p_2 = 0.4$')
plt.legend()
plt.title('Gráfica de pmf para el problema de costo de activos')
plt.show() | _____no_output_____ | MIT | TEMA-2/Clase12_EjemplosDeAplicaciones.ipynb | kitziafigueroa/SPF-2019-II |
EjercicioProblema referencia: Introduction to Operations Research,(Chap.10.1, pag.471 and 1118)> Descargar ejercicio de el siguiente link> https://drive.google.com/file/d/19GvzgEmYUNXrZqlmppRyW5t0p8WfUeIf/view?usp=sharing       **Pessimistic case** **Possibilities: Most likely** **Optimistic case** **Approximations**1. **Simplifying Approximation 1:** Assume that the mean critical path will turn out to be the longest path through the project network.2. **Simplifying Approximation 2:** Assume that the durations of the activities on the mean critical path are statistically independent$$\mu_p \longrightarrow \text{Use the approximation 1}$$$$\sigma_p \longrightarrow \text{Use the approximation 1,2}$$ **Choosing the mean critical path** 3. **Simplifying Approximation 3:** Assume that the form of the probability distribution of project duration is a `normal distribution`. By using simplifying approximations 1 and 2, one version of the central limit theorem justifies this assumption as being a reasonable approximation if the number of activities on the mean critical path is not too small (say, at least 5). The approximation becomes better as this number of activities increases. Casos de estudioSe tiene entonces la variable aleatoria $T$ la cual representa la duración del proyecto en semanas con media $\mu_p$ y varianza $\sigma_p^2$ y $d$ representa la fecha límite de entrega del proyecto, la cual es de 47 semanas.1. Suponer que $T$ distribuye normal y responder cual es la probabilidad $P(T\leq d)$. | ######### Caso de estudio 1 ################
up = 44; sigma = np.sqrt(9); d = 47
P = st.norm(up,sigma).cdf(d)
print('P(T<=d)=',P)
P2 = st.beta | P(T<=d)= 0.8413447460685429
| MIT | TEMA-2/Clase12_EjemplosDeAplicaciones.ipynb | kitziafigueroa/SPF-2019-II |
Lambda School Data Science - Making Data-backed AssertionsThis is, for many, the main point of data science - to create and support reasoned arguments based on evidence. It's not a topic to master in a day, but it is worth some focused time thinking about and structuring your approach to it. Assignment - what's going on here?Consider the data in `persons.csv` (already prepared for you, in the repo for the week). It has four columns - a unique id, followed by age (in years), weight (in lbs), and exercise time (in minutes/week) of 1200 (hypothetical) people.Try to figure out which variables are possibly related to each other, and which may be confounding relationships.Try and isolate the main relationships and then communicate them using crosstabs and graphs. Share any cool graphs that you make with the rest of the class in Slack! | # TODO - your code here
# Use what we did live in lecture as an example
# HINT - you can find the raw URL on GitHub and potentially use that
# to load the data with read_csv, or you can upload it yourself
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/LambdaSchool/DS-Unit-1-Sprint-1-Dealing-With-Data/master/module3-databackedassertions/persons.csv')
df.head()
df.columns = ['unique_id', 'age','weight','exercise_time']
df.head()
df.dtypes
#df.reset_index()
exercise_bins = pd.cut(df['exercise_time'],10)
pd.crosstab(exercise_bins, df['age'], normalize = 'columns')
pd.crosstab(exercise_bins, df['weight'], normalize='columns')
weight_bins = pd.cut(df['weight'], 5)
pd.crosstab(weight_bins, df['age'], normalize='columns') | _____no_output_____ | MIT | module3-databackedassertions/Sanjay_Krishna_LS_DS_113_Making_Data_backed_Assertions_Assignment.ipynb | sanjaykmenon/DS-Unit-1-Sprint-1-Dealing-With-Data |
Can't seem to find a relationship because there is too much data to analyze here. I think I will try plotting this to see if i can get a better understanding. | import seaborn as sns
sns.pairplot(df) | _____no_output_____ | MIT | module3-databackedassertions/Sanjay_Krishna_LS_DS_113_Making_Data_backed_Assertions_Assignment.ipynb | sanjaykmenon/DS-Unit-1-Sprint-1-Dealing-With-Data |
Working with Pytrees[](https://colab.research.google.com/github/google/jax/blob/main/docs/jax-101/05.1-pytrees.ipynb)*Author: Vladimir Mikulik*Often, we want to operate on objects that look like dicts of arrays, or lists of lists of dicts, or other nested structures. In JAX, we refer to these as *pytrees*, but you can sometimes see them called *nests*, or just *trees*.JAX has built-in support for such objects, both in its library functions as well as through the use of functions from [`jax.tree_utils`](https://jax.readthedocs.io/en/latest/jax.tree_util.html) (with the most common ones also available as `jax.tree_*`). This section will explain how to use them, give some useful snippets and point out common gotchas. What is a pytree?As defined in the [JAX pytree docs](https://jax.readthedocs.io/en/latest/pytrees.html):> a pytree is a container of leaf elements and/or more pytrees. Containers include lists, tuples, and dicts. A leaf element is anything that’s not a pytree, e.g. an array. In other words, a pytree is just a possibly-nested standard or user-registered Python container. If nested, note that the container types do not need to match. A single “leaf”, i.e. a non-container object, is also considered a pytree.Some example pytrees: | import jax
import jax.numpy as jnp
example_trees = [
[1, 'a', object()],
(1, (2, 3), ()),
[1, {'k1': 2, 'k2': (3, 4)}, 5],
{'a': 2, 'b': (2, 3)},
jnp.array([1, 2, 3]),
]
# Let's see how many leaves they have:
for pytree in example_trees:
leaves = jax.tree_leaves(pytree)
print(f"{repr(pytree):<45} has {len(leaves)} leaves: {leaves}") | [1, 'a', <object object at 0x7fded60bb8c0>] has 3 leaves: [1, 'a', <object object at 0x7fded60bb8c0>]
(1, (2, 3), ()) has 3 leaves: [1, 2, 3]
[1, {'k1': 2, 'k2': (3, 4)}, 5] has 5 leaves: [1, 2, 3, 4, 5]
{'a': 2, 'b': (2, 3)} has 3 leaves: [2, 2, 3]
DeviceArray([1, 2, 3], dtype=int32) has 1 leaves: [DeviceArray([1, 2, 3], dtype=int32)]
| ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
We've also introduced our first `jax.tree_*` function, which allowed us to extract the flattened leaves from the trees. Why pytrees?In machine learning, some places where you commonly find pytrees are:* Model parameters* Dataset entries* RL agent observationsThey also often arise naturally when working in bulk with datasets (e.g., lists of lists of dicts). Common pytree functionsThe most commonly used pytree functions are `jax.tree_map` and `jax.tree_multimap`. They work analogously to Python's native `map`, but on entire pytrees.For functions with one argument, use `jax.tree_map`: | list_of_lists = [
[1, 2, 3],
[1, 2],
[1, 2, 3, 4]
]
jax.tree_map(lambda x: x*2, list_of_lists) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
To use functions with more than one argument, use `jax.tree_multimap`: | another_list_of_lists = list_of_lists
jax.tree_multimap(lambda x, y: x+y, list_of_lists, another_list_of_lists) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
For `tree_multimap`, the structure of the inputs must exactly match. That is, lists must have the same number of elements, dicts must have the same keys, etc. Example: ML model parametersA simple example of training an MLP displays some ways in which pytree operations come in useful: | import numpy as np
def init_mlp_params(layer_widths):
params = []
for n_in, n_out in zip(layer_widths[:-1], layer_widths[1:]):
params.append(
dict(weights=np.random.normal(size=(n_in, n_out)) * np.sqrt(2/n_in),
biases=np.ones(shape=(n_out,))
)
)
return params
params = init_mlp_params([1, 128, 128, 1]) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
We can use `jax.tree_map` to check that the shapes of our parameters are what we expect: | jax.tree_map(lambda x: x.shape, params) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
Now, let's train our MLP: | def forward(params, x):
*hidden, last = params
for layer in hidden:
x = jax.nn.relu(x @ layer['weights'] + layer['biases'])
return x @ last['weights'] + last['biases']
def loss_fn(params, x, y):
return jnp.mean((forward(params, x) - y) ** 2)
LEARNING_RATE = 0.0001
@jax.jit
def update(params, x, y):
grads = jax.grad(loss_fn)(params, x, y)
# Note that `grads` is a pytree with the same structure as `params`.
# `jax.grad` is one of the many JAX functions that has
# built-in support for pytrees.
# This is handy, because we can apply the SGD update using tree utils:
return jax.tree_multimap(
lambda p, g: p - LEARNING_RATE * g, params, grads
)
import matplotlib.pyplot as plt
xs = np.random.normal(size=(128, 1))
ys = xs ** 2
for _ in range(1000):
params = update(params, xs, ys)
plt.scatter(xs, ys)
plt.scatter(xs, forward(params, xs), label='Model prediction')
plt.legend(); | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
Custom pytree nodesSo far, we've only been considering pytrees of lists, tuples, and dicts; everything else is considered a leaf. Therefore, if you define my own container class, it will be considered a leaf, even if it has trees inside it: | class MyContainer:
"""A named container."""
def __init__(self, name: str, a: int, b: int, c: int):
self.name = name
self.a = a
self.b = b
self.c = c
jax.tree_leaves([
MyContainer('Alice', 1, 2, 3),
MyContainer('Bob', 4, 5, 6)
]) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
Accordingly, if we try to use a tree map expecting our leaves to be the elements inside the container, we will get an error: | jax.tree_map(lambda x: x + 1, [
MyContainer('Alice', 1, 2, 3),
MyContainer('Bob', 4, 5, 6)
]) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
To solve this, we need to register our container with JAX by telling it how to flatten and unflatten it: | from typing import Tuple, Iterable
def flatten_MyContainer(container) -> Tuple[Iterable[int], str]:
"""Returns an iterable over container contents, and aux data."""
flat_contents = [container.a, container.b, container.c]
# we don't want the name to appear as a child, so it is auxiliary data.
# auxiliary data is usually a description of the structure of a node,
# e.g., the keys of a dict -- anything that isn't a node's children.
aux_data = container.name
return flat_contents, aux_data
def unflatten_MyContainer(
aux_data: str, flat_contents: Iterable[int]) -> MyContainer:
"""Converts aux data and the flat contents into a MyContainer."""
return MyContainer(aux_data, *flat_contents)
jax.tree_util.register_pytree_node(
MyContainer, flatten_MyContainer, unflatten_MyContainer)
jax.tree_leaves([
MyContainer('Alice', 1, 2, 3),
MyContainer('Bob', 4, 5, 6)
]) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
Modern Python comes equipped with helpful tools to make defining containers easier. Some of these will work with JAX out-of-the-box, but others require more care. For instance: | from typing import NamedTuple, Any
class MyOtherContainer(NamedTuple):
name: str
a: Any
b: Any
c: Any
# Since `tuple` is already registered with JAX, and NamedTuple is a subclass,
# this will work out-of-the-box:
jax.tree_leaves([
MyOtherContainer('Alice', 1, 2, 3),
MyOtherContainer('Bob', 4, 5, 6)
]) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
Notice that the `name` field now appears as a leaf, as all tuple elements are children. That's the price we pay for not having to register the class the hard way. Common pytree gotchas and patterns Gotchas Mistaking nodes for leavesA common problem to look out for is accidentally introducing tree nodes instead of leaves: | a_tree = [jnp.zeros((2, 3)), jnp.zeros((3, 4))]
# Try to make another tree with ones instead of zeros
shapes = jax.tree_map(lambda x: x.shape, a_tree)
jax.tree_map(jnp.ones, shapes) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
What happened is that the `shape` of an array is a tuple, which is a pytree node, with its elements as leaves. Thus, in the map, instead of calling `jnp.ones` on e.g. `(2, 3)`, it's called on `2` and `3`.The solution will depend on the specifics, but there are two broadly applicable options:* rewrite the code to avoid the intermediate `tree_map`.* convert the tuple into an `np.array` or `jnp.array`, which makes the entiresequence a leaf. Handling of None`jax.tree_utils` treats `None` as a node without children, not as a leaf: | jax.tree_leaves([None, None, None]) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
Patterns Transposing treesIf you would like to transpose a pytree, i.e. turn a list of trees into a tree of lists, you can do so using `jax.tree_multimap`: | def tree_transpose(list_of_trees):
"""Convert a list of trees of identical structure into a single tree of lists."""
return jax.tree_multimap(lambda *xs: list(xs), *list_of_trees)
# Convert a dataset from row-major to column-major:
episode_steps = [dict(t=1, obs=3), dict(t=2, obs=4)]
tree_transpose(episode_steps) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
For more complicated transposes, JAX provides `jax.tree_transpose`, which is more verbose, but allows you specify the structure of the inner and outer Pytree for more flexibility: | jax.tree_transpose(
outer_treedef = jax.tree_structure([0 for e in episode_steps]),
inner_treedef = jax.tree_structure(episode_steps[0]),
pytree_to_transpose = episode_steps
) | _____no_output_____ | ECL-2.0 | docs/jax-101/05.1-pytrees.ipynb | slowy07/jax |
准备工作 | from google.colab import drive
drive.mount('/content/drive')
import os
os.chdir('/content/drive/My Drive/Colab Notebooks/PyTorch/data/pycorrector-words/pycorrector-master-new-abs')
!pip install -r requirements.txt
!pip install pyltp
import pycorrector | _____no_output_____ | Apache-2.0 | pycorrector_threshold_1.1.ipynb | JohnParken/iigroup |
测试结果 | sent, detail = pycorrector.correct('我是你的眼')
print(sent,detail)
sentences = [
'他们都很饿了,需要一些食物来充饥',
'关于外交事务,我们必须十分谨慎才可以的',
'他们都很饿了,需要一些事物来充饥',
'关于外交事物,我们必须十分谨慎才可以的',
'关于外交食务,我们必须十分谨慎才可以的',
'这些方法是非常实用的',
'这些方法是非常食用的',
'高老师的植物是什么你知道吗',
'高老师的值务是什么你知道吗',
'高老师的职务是什么你知道马',
'你的行为让我们赶到非常震惊',
'你的行为让我们感到非常震惊',
'他的医生都将在遗憾当中度过',
'目前的形势对我们非常有力',
'权力和义务是对等的,我们在行使权利的同时,也必须履行相关的义五',
'权力和义务是对等的,我们在行使权力的同时',
'权利和义务是对等的',
'新讲生产建设兵团',
'坐位新时代的接班人'
'物理取闹',
'我们不太敢说话了已经',
'此函数其实就是将环境变量座位在path参数里面做替换,如果环境变量不存在,就原样返回。'
]
for sentence in sentences:
sent, detail = pycorrector.correct(sentence)
print(sent, detail)
print('\n')
sent = '这些方法是非常食用的'
sent, detail = pycorrector.correct(sent)
print(sent,detail)
sent = '这些方法是非常实用的'
sent, detail = pycorrector.correct(sent)
print(sent,detail)
sent = '关于外交事物,我们必须十分谨慎才可以的'
sent, detail = pycorrector.correct(sent)
print(sent,detail)
sent = '关于外交事务,我们必须十分谨慎才可以的'
sent, detail = pycorrector.correct(sent)
print(sent,detail) | [('关于', 0, 2), ('外交', 2, 4), ('事务', 4, 6), (',', 6, 7), ('我们', 7, 9), ('必须', 9, 11), ('十分', 11, 13), ('谨慎', 13, 15), ('才', 15, 16), ('可以', 16, 18), ('的', 18, 19)]
ngram: n=2
[-3.050492286682129, -7.701910972595215, -6.242913246154785, -6.866119384765625, -5.359715938568115, -6.163232326507568, -7.367890357971191, -6.525017738342285, -8.21739387512207, -5.210103988647461, -5.497365951538086, -4.90977668762207]
ngram: n=3
[-6.10285758972168, -6.10285758972168, -9.94007682800293, -8.959914207458496, -9.552006721496582, -7.43984317779541, -10.261677742004395, -10.424861907958984, -10.460886001586914, -10.168984413146973, -7.879795551300049, -9.49227237701416, -9.49227237701416]
med_abs_deviation: 0.41716365019480506
y_score: [2.06034913 0. 0.59162991 0.43913363 0.37245575 0.6745
1.63484645 1.95325208 0.73589959 0.62460491 0.92836197]
median: [-7.65334749]
scores: [-6.37906615 -7.65334749 -8.01925778 -7.38175285 -7.42299167 -8.07051114
-8.66446463 -8.86139162 -8.10848546 -7.26704288 -7.07917571]
maybe_err: ['十分', 6, 7, 'char']
maybe_err: ['谨慎', 7, 8, 'char']
关于外交事务失分仅慎们必须十分谨慎才可以的 [['十分', '失分', 6, 7], ['谨慎', '仅慎', 7, 8]]
| Apache-2.0 | pycorrector_threshold_1.1.ipynb | JohnParken/iigroup |
纠错调试(与结果无关) | import jieba
words = '权力和义务是对等的'
word = jieba.cut(words)
print(' '.join(word))
!pip install pyltp
import os
from pyltp import Segmentor
LTP_DATA_DIR='/content/drive/My Drive/Colab Notebooks/PyTorch/data/ltp_data_v3.4.0'
cws_model_path=os.path.join(LTP_DATA_DIR,'cws.model')
segmentor=Segmentor()
segmentor.load(cws_model_path)
words=segmentor.segment('权力和义务是对等的')
print(type(words))
print(' '.join(words))
words_list = ' '.join(words).split(' ')
# segmentor.release()
token = list(yield_tuple(words_list))
def yield_tuple(words_list):
start = 0
for w in words_list:
width = len(w)
yield(w, start, start + width)
start += width
words=segmentor.segment('<s>这些方法是非常实用的</s>')
print(type(words))
print(' '.join(words))
# segmentor.release()
words=segmentor.segment('这些方法是非常实用的')
print(type(words))
print(' '.join(words))
# segmentor.release()
for i in range(0):
print("hello")
| _____no_output_____ | Apache-2.0 | pycorrector_threshold_1.1.ipynb | JohnParken/iigroup |
Week 5 Quiz Perrin Anto - paj2117 | # import the datasets module from sklearn
from sklearn import datasets
# use datasets.load_boston() to load the Boston housing dataset
boston = datasets.load_boston()
# print the description of the dataset in boston.DESCR
print(boston.DESCR)
# copy the dataset features from boston.data to X
X = boston.data
# copy the dataset labels from boston.target to y
y = boston.target
# import the LinearRegression model from sklearn.linear_model
from sklearn.linear_model import LinearRegression
# initialize a linear regression model as lr with the default arguments
lr = LinearRegression()
# fit the lr model using the entire set of X features and y labels
lr.fit(X,y)
# score the lr model on entire set of X features and y labels
lr.score(X,y)
# import the DecisionTreeRegressor from sklearn.tree
from sklearn.tree import DecisionTreeRegressor
# initialize a decision tree model as dt with the default arguments
dt = DecisionTreeRegressor()
# fit the dt model using the entire set of X features and y labels
dt.fit(X,y)
# score the dt model on the entire set of X features and y labels
dt.score(X,y) | _____no_output_____ | CC0-1.0 | weekly_quiz/Week_5_Quiz-paj2117.ipynb | perrindesign/data-science-class |
from google.colab import drive
drive.mount('/gdrive')
import cv2
import numpy as np
from google.colab.patches import cv2_imshow
circles = cv2.imread('/gdrive/My Drive/Colab Notebooks/opencv/circles.png')
cv2_imshow(circles)
blue_channel = circles[:,:,0]
green_channel = circles[:,:,1]
red_channel = circles[:,:,2]
cv2_imshow(blue_channel)
gray = cv2.cvtColor(circles, cv2.COLOR_BGR2GRAY)
cv2_imshow(gray)
blue = cv2.subtract(blue_channel, gray)
cv2_imshow(blue)
ret, threshold = cv2.threshold(blue, 110, 255, cv2.THRESH_BINARY)
cv2_imshow(threshold)
#HSV
blue_array = np.uint8([[[255, 0, 0]]])
hsv_blue_array = cv2.cvtColor(blue_array, cv2.COLOR_BGR2HSV)
print(hsv_blue_array)
img = cv2.imread('/gdrive/My Drive/Colab Notebooks/opencv/circles.png', 1)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
cv2_imshow(img)
#blue color range
blue_low = np.array([110,50,50])
blue_high = np.array([130,255,255])
mask = cv2.inRange(hsv, blue_low, blue_high)
cv2_imshow(mask) | _____no_output_____ | MIT | opencv_class_2.ipynb | hrnn/image-processing-practice |
|
client 생성 | import boto3
ec2 = boto3.resource('ec2') #high level client
instances = ec2.instances.all()
for i in instances:
print(i)
i1 = ec2.Instance(id='i-0cda56764352ef50e')
tag = i1.tags
print(tag)
next((t['Value'] for t in i1.tags if t['Key'] == 'Name'), None)
b = next((t['Value'] for t in i1.tags if t['Key'] == 'dd'), None)
print(b)
def findTag(instance, key, value):
tags = instance.tags
if tags is None:
return False
tag_value = next((t['Value'] for t in tags if t['Key'] == key), None)
return tag_value == value
findTag(i1,'Name', value='tt')
findTag(i1,'Name', value='june-prod-NAT')
findTag(i1,'d', value='june-prod-NAT')
for i in instances:
print(i.instance_id, findTag(i, 'Stop', 'auto')) | i-0cda56764352ef50e False
i-0e0c4fa77f5a678b2 True
i-07e52d2fbc2ebd266 False
i-0d022de22510a69b7 False
i-0e701a6507dbae898 False
| MIT | aws/python/AWS boto3 ec2 various test.ipynb | honux77/practice |
Methodology Objective**Use FAERS data on drug safety to identify possible risk factors associated with patient mortality and other serious adverse events associated with approved used of a drug or drug class** Data**_Outcome table_** 1. Start with outcome_c table to define unit of analysis (primaryid)2. Reshape outcome_c to one row per primaryid3. Outcomes grouped into 3 categories: a. death, b. serious, c. other 4. Multiclass model target format: each outcome grp coded into separate columns**_Demo table_**1. Drop fields not used in model input to reduce table size (preferably before import to notebook)2. Check if demo table one row per primaryid (if NOT then need to reshape / clean - TBD)**_Model input and targets_**1. Merge clean demo table with reshaped multilabel outcome targets (rows: primaryid, cols: outcome grps)2. Inspect merged file to check for anomalies (outliers, bad data, ...) Model**_Multilabel Classifier_**1. Since each primaryid has multiple outcomes coded in the outcome_c table, the ML model should predict the probability of each possible outcome.2. In scikit-learn lib most/all classifiers can predict multilabel outcomes by coding target outputs into array ResultsTBD InsightsTBD Data Pipeline: Outcome Table | # read outcome_c.csv & drop unnecessary fields
infile = '../input/Outc20Q1.csv'
cols_in = ['primaryid','outc_cod']
df = pd.read_csv(infile, usecols=cols_in)
print(df.head(),'\n')
print(f'Total number of rows: {len(df):,}\n')
print(f'Unique number of primaryids: {df.primaryid.nunique():,}')
# distribution of outcomes
from collections import Counter
o_cnt = Counter(df['outc_cod'])
print('Distribution of Adverse Event Outcomes in FAERS 2020 Q1')
for k, v in o_cnt.items():
print(f'{k}: {v:>8,}')
print(72*'-')
print(f'Most common outcome is {o_cnt.most_common(1)[0][0]} with {o_cnt.most_common(1)[0][1]:,} in 2020Q1')
# DO NOT GROUP OUTCOMES FOR MULTILABEL - MUST BE 0 (-1) OR 1 FOR EACH CLASS
### create outcome groups: death:'DE', serious: ['LT','HO','DS','CA',RI], other: 'OT'
# - USE TO CREATE OUTCOME GROUPS: key(original code) : value(new code)
# map grp dict to outc_cod
'''
outc_to_grp = {'DE':'death',
'LT':'serious',
'HO':'serious',
'DS':'serious',
'CA':'serious',
'RI':'serious',
'OT':'other'}
df['oc_cat'] = df['outc_cod'].map(outc_to_grp)
print(df.head(),'\n')'''
print('Distribution of AE Outcomes')
print(df['outc_cod'].value_counts()/len(df['outc_cod']),'\n')
print(df['outc_cod'].value_counts().plot(kind='pie'))
# outcome grps
print(df['outc_cod'].value_counts()/len(df['outc_cod']),'\n')
# one-hot encoding of outcome grp
# step1: pandas automatic dummy var coding
cat_cols = ['outc_cod'] #, 'oc_cat']
df1 = pd.get_dummies(df, prefix_sep="__", columns=cat_cols)
print('Outcome codes and groups')
print(f'Total number of rows: {len(df1):,}')
print(f'Unique number of primaryids: {df1.primaryid.nunique():,}\n')
print(df1.columns,'\n')
print(df1.head())
print(df1.tail())
# step 2: create multilabel outcomes by primaryid with groupby
outc_lst = ['outc_cod__CA','outc_cod__DE','outc_cod__DS','outc_cod__HO','outc_cod__LT',
'outc_cod__OT','outc_cod__RI']
#oc_lst = ['oc_cat__death','oc_cat__other','oc_cat__serious']
df2 = df1.groupby(['primaryid'])[outc_lst].sum().reset_index()
df2['n_outc'] = df2[outc_lst].sum(axis='columns') # cnt total outcomes by primaryid
print(df2.columns)
print('-'*72)
print('Outcome codes in Multilabel format')
print(f'Total number of rows: {len(df2):,}')
print(f'Unique number of primaryids: {df2.primaryid.nunique():,}\n')
print(df2.head())
#print(df2.tail())
print(df2[outc_lst].corr())
print(df2.describe().T,'\n')
# plot distribution of outcome groups
'''
color = {'boxes':'DarkGreen', 'whiskers':'DarkOrange', 'medians':'DarkBlue', 'caps':'Gray'}
print(df2[outc_lst].plot.bar()) #color=color, sym='r+'))'''
# check primaryid from outcomes table with many outcomes
# print(df2[df2['n_outc'] >= 6])
# checked in both outcomes and demo - multiple primaryids in outcome but only one primaryid in demo
# appears to be okay to use
# compare primaryids above in outcomes table to same in demo table
#pid_lst = [171962202,173902932,174119951,175773511,176085111]
#[print(df_demo[df_demo['primaryid'] == p]) for p in pid_lst] # one row in demo per primaryid - looks ok to join
# save multilabel data to csv
df2.to_csv('../input/outc_cod-multilabel.csv') | _____no_output_____ | MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
Data Pipeline - Demo Table | # step 0: read demo.csv & check fields for missing values
infile = '../input/DEMO20Q1.csv'
#%timeit df_demo = pd.read_csv(infile) # 1 loop, best of 5: 5.19 s per loop
df_demo = pd.read_csv(infile)
print(df_demo.columns,'\n')
print(f'Percent missing by column:\n{(pd.isnull(df_demo).sum()/len(df_demo))*100}')
# step 1: exclude fields with large percent missing on read to preserve memory
keep_cols = ['primaryid', 'caseversion', 'i_f_code', 'event.dt1', 'mfr_dt', 'init_fda_dt', 'fda_dt',
'rept_cod', 'mfr_num', 'mfr_sndr', 'age', 'age_cod', 'age_grp','sex', 'e_sub', 'wt', 'wt_cod',
'rept.dt1', 'occp_cod', 'reporter_country', 'occr_country']
# removed cols: ['auth_num','lit_ref','to_mfr']
infile = '../input/DEMO20Q1.csv'
#%timeit df_demo = pd.read_csv(infile, usecols=keep_cols) # 1 loop, best of 5: 4.5 s per loop
df_demo = pd.read_csv(infile, usecols=keep_cols)
df_demo.set_index('primaryid', drop=False)
print(df_demo.head(),'\n')
print(f'Total number of rows: {len(df_demo):,}\n')
print(f'Percent missing by column:\n{(pd.isnull(df_demo).sum()/len(df_demo))*100}')
# step 2: merge demo and multilabel outcomes on primaryid
df_demo_outc = pd.merge(df_demo, df2, on='primaryid')
print('Demo - Multilabel outcome Merge','\n')
print(df_demo_outc.head(),'\n')
print(f'Total number of rows: {len(df_demo_outc):,}\n')
print(f'Unique number of primaryids: {df_demo_outc.primaryid.nunique():,}','\n')
print(f'Percent missing by column:\n{(pd.isnull(df_demo_outc).sum()/len(df_demo_outc))*100}')
# step 3: calculate wt_lbs and check
print(df_demo_outc.wt_cod.value_counts())
print(df_demo_outc.groupby('wt_cod')['wt'].describe())
# convert kg to lbs
df_demo_outc['wt_lbs'] = np.where(df_demo_outc['wt_cod']=='KG',df_demo_outc['wt']*2.204623,df_demo_outc['wt'])
print(df_demo_outc[['age','wt_lbs']].describe())
print(df_demo_outc[['age','wt_lbs']].corr())
print(sns.regplot('age','wt_lbs',data=df_demo_outc)) | KG 65844
LBS 72
Name: wt_cod, dtype: int64
count mean std min 25% 50% 75% max
wt_cod
KG 65844.0 73.377305 26.078758 0.0 59.00 72.00 86.26 720.18
LBS 72.0 171.151389 60.316181 17.0 128.75 165.75 195.25 361.00
age wt_lbs
count 173965.000000 65916.000000
mean 237.044055 161.779543
std 2050.336650 57.497343
min -3.000000 0.000000
25% 43.000000 130.072757
50% 60.000000 158.732856
75% 72.000000 190.170780
max 41879.000000 1587.725392
age wt_lbs
age 1.000000 0.042254
wt_lbs 0.042254 1.000000
AxesSubplot(0.125,0.125;0.775x0.755)
| MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
Insight: No correlation between wt and age + age range looks wrong. Check age distributions | # step 4: check age fields
# age_grp
print('age_grp')
print(df_demo_outc.age_grp.value_counts(),'\n')
# age_cod
print('age_cod')
print(df_demo_outc.age_cod.value_counts(),'\n')
# age
print('age')
print(df_demo_outc.groupby(['age_grp','age_cod'])['age'].describe()) | age_grp
A 17048
E 8674
N 1004
C 626
T 503
I 344
Name: age_grp, dtype: int64
age_cod
YR 168732
DY 2289
MON 1434
DEC 1377
WK 134
HR 11
Name: age_cod, dtype: int64
age
count mean std min 25% 50% 75% \
age_grp age_cod
A DEC 73.0 4.424658 1.311464 2.0 3.00 5.0 6.00
MON 1.0 19.000000 NaN 19.0 19.00 19.0 19.00
YR 10548.0 46.204115 12.832555 14.0 36.00 49.0 57.00
C MON 4.0 29.500000 5.196152 24.0 26.25 29.0 32.25
YR 315.0 6.726984 3.043486 2.0 4.00 7.0 9.00
E DEC 65.0 7.830769 0.893890 7.0 7.00 8.0 8.00
YR 6096.0 74.605315 7.153633 44.0 69.00 73.0 79.00
I DY 1.0 1.000000 NaN 1.0 1.00 1.0 1.00
MON 63.0 9.190476 5.535391 1.0 5.00 9.0 11.50
WK 4.0 14.250000 14.705441 4.0 6.25 8.5 16.50
YR 12.0 1.166667 0.389249 1.0 1.00 1.0 1.00
N DY 61.0 1.540984 3.423321 0.0 0.00 0.0 1.00
HR 1.0 1.000000 NaN 1.0 1.00 1.0 1.00
MON 14.0 13.857143 11.400790 3.0 5.25 9.5 17.00
YR 6.0 0.166667 0.408248 0.0 0.00 0.0 0.00
T YR 388.0 14.938144 1.631818 12.0 14.00 15.0 16.00
max
age_grp age_cod
A DEC 6.0
MON 19.0
YR 82.0
C MON 36.0
YR 13.0
E DEC 10.0
YR 103.0
I DY 1.0
MON 23.0
WK 36.0
YR 2.0
N DY 16.0
HR 1.0
MON 34.0
YR 1.0
T YR 19.0
| MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
age_grp, age_cod, age: Distributions by age group & code look reasonable. Create age in yrs. age_grp* N - Neonate* I - Infant* C - Child* T - Adolescent (teen?)* A - Adult* E - Elderlyage_cod* DEC - decade (yrs = 10*DEC)* YR - year (yrs = 1*YR)* MON - month (yrs = MON/12)* WK - week (yrs = WK/52)* DY - day (yrs = DY/365.25)* HR - hour (yrs = HR/(365.25*24)) or code to zero | # step 5: calculate age_yrs and check corr with wt_lbs
df_demo_outc['age_yrs'] = np.where(df_demo_outc['age_cod']=='DEC',df_demo_outc['age']*10,
np.where(df_demo_outc['age_cod']=='MON',df_demo_outc['age']/12,
np.where(df_demo_outc['age_cod']=='WK',df_demo_outc['age']/52,
np.where(df_demo_outc['age_cod']=='DY',df_demo_outc['age']/365.25,
np.where(df_demo_outc['age_cod']=='DEC',df_demo_outc['age']/8766,
df_demo_outc['age'])))))
# age_yrs
print('age_yrs')
print(df_demo_outc.groupby(['age_grp','age_cod'])['age_yrs'].describe())
print(df_demo_outc[['age','age_yrs']].describe())
print(df_demo_outc[['wt_lbs','age_yrs']].corr())
print(sns.regplot('wt_lbs','age_yrs',data=df_demo_outc)) | age_yrs
count mean std min 25% \
age_grp age_cod
A DEC 73.0 44.246575 13.114645 20.000000 30.000000
MON 1.0 1.583333 NaN 1.583333 1.583333
YR 10548.0 46.204115 12.832555 14.000000 36.000000
C MON 4.0 2.458333 0.433013 2.000000 2.187500
YR 315.0 6.726984 3.043486 2.000000 4.000000
E DEC 65.0 78.307692 8.938895 70.000000 70.000000
YR 6096.0 74.605315 7.153633 44.000000 69.000000
I DY 1.0 0.002738 NaN 0.002738 0.002738
MON 63.0 0.765873 0.461283 0.083333 0.416667
WK 4.0 0.274038 0.282797 0.076923 0.120192
YR 12.0 1.166667 0.389249 1.000000 1.000000
N DY 61.0 0.004219 0.009373 0.000000 0.000000
HR 1.0 1.000000 NaN 1.000000 1.000000
MON 14.0 1.154762 0.950066 0.250000 0.437500
YR 6.0 0.166667 0.408248 0.000000 0.000000
T YR 388.0 14.938144 1.631818 12.000000 14.000000
50% 75% max
age_grp age_cod
A DEC 50.000000 60.000000 60.000000
MON 1.583333 1.583333 1.583333
YR 49.000000 57.000000 82.000000
C MON 2.416667 2.687500 3.000000
YR 7.000000 9.000000 13.000000
E DEC 80.000000 80.000000 100.000000
YR 73.000000 79.000000 103.000000
I DY 0.002738 0.002738 0.002738
MON 0.750000 0.958333 1.916667
WK 0.163462 0.317308 0.692308
YR 1.000000 1.000000 2.000000
N DY 0.000000 0.002738 0.043806
HR 1.000000 1.000000 1.000000
MON 0.791667 1.416667 2.833333
YR 0.000000 0.000000 1.000000
T YR 15.000000 16.000000 19.000000
age age_yrs
count 173965.000000 173965.000000
mean 237.044055 55.906426
std 2050.336650 20.714407
min -3.000000 -3.000000
25% 43.000000 43.000000
50% 60.000000 60.000000
75% 72.000000 71.000000
max 41879.000000 120.000000
wt_lbs age_yrs
wt_lbs 1.000000 0.229312
age_yrs 0.229312 1.000000
AxesSubplot(0.125,0.125;0.775x0.755)
| MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
Halis checked and wt in 400-800 range (and max wt of 1,400 lbs) is correct | # review data where wt_lbs > 800 lbs?
print(df_demo_outc[df_demo_outc['wt_lbs'] > 800])
# step 6: Number of AE's reported in 2020Q1 by manufacturer
print('Number of patients with adverse events by manufacturer reported in 2020Q1 from DEMO table:')
print(df_demo_outc.mfr_sndr.value_counts())
# step 7: save updated file to csv
print(df_demo_outc.columns)
# save merged demo & multilabel data to csv
df_demo_outc.to_csv('../input/demo-outc_cod-multilabel-wt_lbs-age_yrs.csv') | Index(['primaryid', 'caseversion', 'i_f_code', 'event.dt1', 'mfr_dt',
'init_fda_dt', 'fda_dt', 'rept_cod', 'mfr_num', 'mfr_sndr', 'age',
'age_cod', 'age_grp', 'sex', 'e_sub', 'wt', 'wt_cod', 'rept.dt1',
'occp_cod', 'reporter_country', 'occr_country', 'outc_cod__CA',
'outc_cod__DE', 'outc_cod__DS', 'outc_cod__HO', 'outc_cod__LT',
'outc_cod__OT', 'outc_cod__RI', 'n_outc', 'wt_lbs', 'age_yrs'],
dtype='object')
| MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
ML Pipeline: Preprocessing | # step 0: check cat vars for one-hot coding
cat_lst = ['i_f_code','rept_cod','sex','occp_cod']
[print(df_demo_outc[x].value_counts(),'\n') for x in cat_lst]
print(df_demo_outc[cat_lst].describe(),'\n') # sex, occp_cod have missing values
# step 1: create one-hot dummies for multilabel outcomes
cat_cols = ['i_f_code', 'rept_cod', 'occp_cod', 'sex']
df = pd.get_dummies(df_demo_outc, prefix_sep="__", columns=cat_cols, drop_first=True)
print(df.columns)
print(df.describe().T)
print(df.head()) | Index(['primaryid', 'caseversion', 'event.dt1', 'mfr_dt', 'init_fda_dt',
'fda_dt', 'mfr_num', 'mfr_sndr', 'age', 'age_cod', 'age_grp', 'e_sub',
'wt', 'wt_cod', 'rept.dt1', 'reporter_country', 'occr_country',
'outc_cod__CA', 'outc_cod__DE', 'outc_cod__DS', 'outc_cod__HO',
'outc_cod__LT', 'outc_cod__OT', 'outc_cod__RI', 'n_outc', 'wt_lbs',
'age_yrs', 'i_f_code__I', 'rept_cod__5DAY', 'rept_cod__DIR',
'rept_cod__EXP', 'rept_cod__PER', 'occp_cod__HP', 'occp_cod__LW',
'occp_cod__MD', 'occp_cod__PH', 'sex__M', 'sex__UNK'],
dtype='object')
count mean std min \
primaryid 260715.0 1.905476e+08 1.567929e+08 39651443.0
caseversion 260715.0 1.950620e+00 2.538483e+00 1.0
age 173965.0 2.370441e+02 2.050337e+03 -3.0
wt 65916.0 7.348410e+01 2.633834e+01 0.0
outc_cod__CA 260715.0 6.129298e-03 7.804969e-02 0.0
outc_cod__DE 260715.0 1.542719e-01 3.612099e-01 0.0
outc_cod__DS 260715.0 2.656157e-02 1.607985e-01 0.0
outc_cod__HO 260715.0 4.048175e-01 4.908576e-01 0.0
outc_cod__LT 260715.0 4.762288e-02 2.129674e-01 0.0
outc_cod__OT 260715.0 6.459544e-01 4.782240e-01 0.0
outc_cod__RI 260715.0 1.373147e-03 3.703062e-02 0.0
n_outc 260715.0 1.286731e+00 5.546336e-01 1.0
wt_lbs 65916.0 1.617795e+02 5.749734e+01 0.0
age_yrs 173965.0 5.590643e+01 2.071441e+01 -3.0
i_f_code__I 260715.0 6.325605e-01 4.821085e-01 0.0
rept_cod__5DAY 260715.0 1.150682e-05 3.392157e-03 0.0
rept_cod__DIR 260715.0 4.473851e-02 2.067296e-01 0.0
rept_cod__EXP 260715.0 8.546420e-01 3.524621e-01 0.0
rept_cod__PER 260715.0 1.006041e-01 3.008044e-01 0.0
occp_cod__HP 260715.0 2.720058e-01 4.449937e-01 0.0
occp_cod__LW 260715.0 1.434517e-02 1.189094e-01 0.0
occp_cod__MD 260715.0 2.788792e-01 4.484489e-01 0.0
occp_cod__PH 260715.0 6.834666e-02 2.523403e-01 0.0
sex__M 260715.0 3.829891e-01 4.861166e-01 0.0
sex__UNK 260715.0 7.671212e-05 8.758226e-03 0.0
25% 50% 75% max
primaryid 1.723185e+08 1.736196e+08 1.748495e+08 1.741600e+09
caseversion 1.000000e+00 1.000000e+00 2.000000e+00 9.200000e+01
age 4.300000e+01 6.000000e+01 7.200000e+01 4.187900e+04
wt 5.900000e+01 7.200000e+01 8.640000e+01 7.201800e+02
outc_cod__CA 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
outc_cod__DE 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
outc_cod__DS 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
outc_cod__HO 0.000000e+00 0.000000e+00 1.000000e+00 1.000000e+00
outc_cod__LT 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
outc_cod__OT 0.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
outc_cod__RI 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
n_outc 1.000000e+00 1.000000e+00 1.000000e+00 6.000000e+00
wt_lbs 1.300728e+02 1.587329e+02 1.901708e+02 1.587725e+03
age_yrs 4.300000e+01 6.000000e+01 7.100000e+01 1.200000e+02
i_f_code__I 0.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
rept_cod__5DAY 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
rept_cod__DIR 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
rept_cod__EXP 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
rept_cod__PER 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
occp_cod__HP 0.000000e+00 0.000000e+00 1.000000e+00 1.000000e+00
occp_cod__LW 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
occp_cod__MD 0.000000e+00 0.000000e+00 1.000000e+00 1.000000e+00
occp_cod__PH 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
sex__M 0.000000e+00 0.000000e+00 1.000000e+00 1.000000e+00
sex__UNK 0.000000e+00 0.000000e+00 0.000000e+00 1.000000e+00
primaryid caseversion event.dt1 mfr_dt init_fda_dt fda_dt \
0 100046942 2 NaN 2020-01-08 2014-03-12 2020-01-10
1 100048206 6 NaN 2020-03-05 2014-03-12 2020-03-09
2 100048622 2 2005-12-30 2020-03-12 2014-03-12 2020-03-16
3 100051352 2 2006-09-22 2020-02-20 2014-03-12 2020-02-24
4 100051382 2 1999-01-01 2020-01-08 2014-03-12 2020-01-10
mfr_num mfr_sndr age age_cod ... rept_cod__5DAY \
0 US-PFIZER INC-2014065112 PFIZER NaN NaN ... 0
1 US-PFIZER INC-2014029927 PFIZER 68.0 YR ... 0
2 US-PFIZER INC-2014066653 PFIZER 57.0 YR ... 0
3 US-PFIZER INC-2014072143 PFIZER 51.0 YR ... 0
4 US-PFIZER INC-2014071938 PFIZER 50.0 YR ... 0
rept_cod__DIR rept_cod__EXP rept_cod__PER occp_cod__HP occp_cod__LW \
0 0 1 0 0 1
1 0 1 0 0 0
2 0 1 0 0 1
3 0 1 0 0 1
4 0 1 0 0 1
occp_cod__MD occp_cod__PH sex__M sex__UNK
0 0 0 0 0
1 1 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
[5 rows x 38 columns]
| MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
check sklearn for imputation options | # step 2: use means to impute the missing values of the features with missing records
# calculate percent missing
print(df.columns,'\n')
print(f'Percent missing by column:\n{(pd.isnull(df).sum()/len(df))*100}')
num_inputs = ['n_outc', 'wt_lbs', 'age_yrs']
cat_inputs = ['n_outc', 'wt_lbs', 'age_yrs', 'i_f_code__I', 'rept_cod__5DAY',
'rept_cod__DIR', 'rept_cod__EXP', 'rept_cod__PER', 'occp_cod__HP',
'occp_cod__LW', 'occp_cod__MD', 'occp_cod__PH', 'sex__M', 'sex__UNK']
inputs = num_inputs + cat_inputs
print(inputs)
target_labels = ['oc_cat__death', 'oc_cat__other', 'oc_cat__serious']
# calculate means
means = df[inputs].mean()
print(means.shape, means)
# mean fill NA
'''
wt_lbs 161.779543
age_yrs 55.906426
'''
df['wt_lbs_mean'] = np.where(pd.isnull(df['wt_lbs']),161.779543,df['wt_lbs'])
df['age_yrs_mean'] = np.where(pd.isnull(df['age_yrs']),55.906426,df['age_yrs'])
print('mean fill NA - wt_lbs & age_yrs')
print(df.describe().T)
print(df.columns)
### standarize features
drop_cols = ['primaryid', 'caseid', 'caseversion', 'event.dt1', 'mfr_dt',
'init_fda_dt', 'fda_dt', 'auth_num', 'mfr_num', 'mfr_sndr', 'lit_ref',
'age', 'age_cod', 'age_grp', 'e_sub', 'wt', 'wt_cod', 'rept.dt1',
'to_mfr', 'reporter_country', 'occr_country', 'outc_cod__CA',
'outc_cod__DE', 'outc_cod__DS', 'outc_cod__HO', 'outc_cod__LT',
'outc_cod__OT', 'outc_cod__RI', 'oc_cat__death', 'oc_cat__other',
'oc_cat__serious', 'wt_lbs', 'age_yrs']
inputs_mean = ['n_outc', 'wt_lbs_mean', 'age_yrs_mean', 'i_f_code__I', 'rept_cod__5DAY',
'rept_cod__DIR', 'rept_cod__EXP', 'rept_cod__PER', 'occp_cod__HP',
'occp_cod__LW', 'occp_cod__MD', 'occp_cod__PH', 'sex__M']
X = df.drop(columns=drop_cols)
print(X.columns)
Xscaled = StandardScaler().fit_transform(X)
print(Xscaled.shape)
#X = pd.DataFrame(scaled, columns=inputs_mean) #.reset_index()
#print(X.describe().T,'\n')
#y_multilabel = np.c_[df['CA'], df['DE'], df['DS'], df['HO'], df['LT'], df['OT'], df['RI']]
y_multilabel = np.c_[df['oc_cat__death'], df['oc_cat__other'], df['oc_cat__serious']]
print(y_multilabel.shape)
# test multilabel classifier
knn_clf = KNeighborsClassifier()
knn_clf.fit(Xscaled,y_multilabel)
knn_clf.score(Xscaled,y_multilabel)
# review sklean api - hamming_loss, jaccard_similarity_score, f1_score
from sklearn.metrics import hamming_loss, jaccard_similarity_score
pred_knn_multilabel = knn_clf.pred(Xscaled)
f1_score(y_multilabel, pred_knn_multilabel, average='macro') | _____no_output_____ | MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
STOPPED HERE - 1.13.2021 ML Pipeline: Model Selection | ### define functions for evaluating each of 8 types of supervised learning algorithms
def evaluate_model(predictors, targets, model, param_dict, passes=500):
seed = int(round(random()*1000,0))
print(seed)
# specify minimum test MSE, best hyperparameter set
test_err = []
min_test_err = 1e10
best_hyperparams = {}
# specify MSE predicted from the full dataset by the optimal model of each type with the best hyperparameter set
#full_y_err = None
full_err_mintesterr = None
full_err = []
# specify the final model returned
ret_model = None
# define MSE as the statistic to determine goodness-of-fit - the smaller the better
scorer = make_scorer(mean_squared_error, greater_is_better=False)
# split the data to a training-testing pair randomly by passes = n times
for i in range(passes):
print('Pass {}/{} for model {}'.format(i + 1, passes, model))
X_train, X_test, y_train, y_test = train_test_split(predictors, targets, test_size=0.3, random_state=(i+1)*seed )
# 3-fold CV on a training set, and returns an optimal_model with the best_params_ fit
default_model = model()
model_gs = GridSearchCV(default_model, param_dict, cv=3, n_jobs=-1, verbose=0, scoring=scorer) # n_jobs=16,
model_gs.fit(X_train, y_train)
optimal_model = model(**model_gs.best_params_)
optimal_model.fit(X_train, y_train)
# use the optimal_model generated above to test in the testing set and yield an MSE
y_pred = optimal_model.predict(X_test)
err = mean_squared_error(y_test, y_pred)
test_err.extend([err])
# use the optimal_model generated above to be applied to the full data set and predict y to yield an MSE
full_y_pred=optimal_model.predict(predictors)
full_y_err = mean_squared_error(full_y_pred, y)
full_err.extend([full_y_err])
# look for the smallest MSE yield from the testing set,
# so the optimal model that meantimes yields the smallest MSE from the testing set can be considered as the final model of the type
#print('MSE for {}: {}'.format(model, err))
if err < min_test_err:
min_test_err = err
best_hyperparams = model_gs.best_params_
full_err_mintesterr = full_y_err
# return the final model of the type
ret_model = optimal_model
test_err_dist = pd.DataFrame(test_err, columns=["test_err"]).describe()
full_err_dist = pd.DataFrame(full_err, columns=["full_err"]).describe()
print('Model {} with hyperparams {} yielded \n\ttest error {} with distribution \n{} \n\
toverall error {} with distribution \n{}'. \
format(model, best_hyperparams, min_test_err, test_err_dist, full_err_mintesterr,full_err_dist))
return ret_model
#%lsmagic
# Random Forest
#%%timeit
rf = evaluate_model(X,y, RandomForestClassifier,
{'n_estimators': [200, 400, 800,1000],
'max_depth': [2, 3, 4, 5],
'min_samples_leaf': [2,3],
'min_samples_split': [2, 3, 4],
'max_features' : ['auto', 'sqrt', 'log2']}, passes=1) # 250) | 988
Pass 1/1 for model <class 'sklearn.ensemble.forest.RandomForestClassifier'>
| MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
STOPPED HERE - 1.12.2021 TODOs:1. Multicore processing: Setup Dask for multicore processing in Jupyter Notebook2. Distributed computing: Check Dask Distributed for local cluster setup | from joblib import dump, load
dump(rf, 'binary_rf.obj') # rf_model
features2 = pd.DataFrame(data=rf.feature_importances_, index=data.columns)
features2.sort_values(by=0,ascending=False, inplace=True)
print(features2[:50])
import seaborn as sns
ax_rf = sns.barplot(x=features2.index, y=features2.iloc[:,0], order=features2.index)
ax_rf.set_ylabel('Feature importance')
fig_rf = ax_rf.get_figure()
rf_top_features=features2.index[:2].tolist()
print(rf_top_features)
pdp, axes = partial_dependence(rf, X= data, features=[(0, 1)], grid_resolution=20)
fig = plt.figure()
ax = Axes3D(fig)
XX, YY = np.meshgrid(axes[0], axes[1])
Z = pdp[0].T
surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1,
cmap=plt.cm.BuPu, edgecolor='k')
#ax.set_xlabel('% Severe Housing \nCost Burden', fontsize=12)
#ax.set_ylabel('% Veteran', fontsize=15)
ax.set_xlabel('% mortality diff', fontsize=12)
ax.set_ylabel('% severe housing \ncost burden', fontsize=15)
ax.set_zlabel('Partial dependence', fontsize=15)
ax.view_init(elev=22, azim=330)
plt.colorbar(surf)
plt.suptitle('Partial Dependence of Top 2 Features \nRandom Forest', fontsize=15)
plt.subplots_adjust(top=0.9)
plt.show()
print(features2.index[range(14)])
datafeatures2 = pd.concat([states,y,data[features2.index[range(38)]]],axis=1)
datafeatures2.head(10)
from sklearn.inspection import permutation_importance
# feature names
feature_names = list(features2.columns)
# model - rf
model = load('binary_rf.obj')
# calculate permutation importance - all data - final model
perm_imp_all = permutation_importance(model, data, y, n_repeats=10, random_state=42)
print('Permutation Importances - mean')
print(perm_imp_all.importances_mean)
'''
# create dict of feature names and importances
fimp_dict_all = dict(zip(feature_names,perm_imp_all.importances_mean))
# feature importance - all
print('Permutation Importance for All Data')
print(fimp_dict_all)
# plot importances - all
y_pos = np.arange(len(feature_names))
plt.barh(y_pos, fimp_dict_all.importances_mean, align='center', alpha=0.5)
plt.yticks(y_pos, feature_names)
plt.xlabel('Permutation Importance - All')
plt.title('Feature Importance - All Data')
plt.show()
'''
dataused = pd.concat([states,y,data],axis=1)
print(dataused.shape)
print(dataused.head(10))
#from joblib import dump, load
dump(perm_imp_all, 'perm_imp_rf.obj')
dataused.to_excel(r'dataused_cj08292020_v2.xlsx',index=None, header=True) | _____no_output_____ | MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
END BG RF ANALYSIS - 8.31.2020 OTHER MODELS NOT RUN | # LASSO
lasso = evaluate_model(data, Lasso, {'alpha': np.arange(0, 1.1, 0.001),
'normalize': [True],
'tol' : [1e-3, 1e-4, 1e-5],
'max_iter': [1000, 4000, 7000]}, passes=250)
# Ridge regression
ridge = evaluate_model(data, Ridge, {'alpha': np.arange(0, 1.1, 0.05),
'normalize': [True],
'tol' : [1e-3, 1e-4, 1e-5],
'max_iter': [1000, 4000, 7000]}, passes=250)
# K-nearest neighborhood
knn = evaluate_model(data, KNeighborsRegressor, {'n_neighbors': np.arange(1, 8),
'algorithm': ['ball_tree','kd_tree','brute']}, passes=250)
# Gradient Boosting Machine
gbm = evaluate_model(data, GradientBoostingRegressor, {'learning_rate': [0.1, 0.05, 0.02, 0.01],
'n_estimators': [100, 200, 400, 800, 1000],
'min_samples_leaf': [2,3],
'max_depth': [2, 3, 4, 5],
'max_features': ['auto', 'sqrt', 'log2']}, passes=250)
# CART: classification and regression tree
cart = evaluate_model(data, DecisionTreeRegressor, {'splitter': ['best', 'random'],
'criterion': ['mse', 'friedman_mse', 'mae'],
'max_depth': [2, 3, 4, 5],
'min_samples_leaf': [2,3],
'max_features' : ['auto', 'sqrt', 'log2']}, passes=250)
# Neural network: multi-layer perceptron
nnmlp = evaluate_model(data, MLPRegressor, {'hidden_layer_sizes': [(50,)*3, (50,)*5, (50,)*10, (50,)*30, (50,)*50],
'activation': ['identity','logistic','tanh','relu']}, passes=250)
# Support Vector Machine: a linear function is an efficient model to work with
svm = evaluate_model(data, LinearSVR, {'tol': [1e-3, 1e-4, 1e-5],
'C' : np.arange(0.1,3,0.1),
'loss': ['epsilon_insensitive','squared_epsilon_insensitive'],
'max_iter': [1000, 2000, 4000]}, passes=250)
features1 = pd.DataFrame(data=gbm.feature_importances_, index=data.columns)
features1.sort_values(by=0,ascending=False, inplace=True)
print(features1[:40])
print(features1.index[range(38)])
datafeatures1 = pd.concat([states,y,data[features1.index[range(38)]]],axis=1)
datafeatures1.head(10)
import seaborn as sns
ax_gbm = sns.barplot(x=features1.index, y=features1.iloc[:,0], order=features1.index)
ax_gbm.set_ylabel('Feature importance')
fig_gbm = ax_gbm.get_figure() | _____no_output_____ | MIT | faers_multiclass_data_pipeline_1_18_2021.ipynb | briangriner/OSTF-FAERS |
Problem Simulation Tutorial | import pyblp
import numpy as np
import pandas as pd
pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__ | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
Before configuring and solving a problem with real data, it may be a good idea to perform Monte Carlo analysis on simulated data to verify that it is possible to accurately estimate model parameters. For example, before configuring and solving the example problems in the prior tutorials, it may have been a good idea to simulate data according to the assumed models of supply and demand. During such Monte Carlo anaysis, the data would only be used to determine sample sizes and perhaps to choose reasonable true parameters.Simulations are configured with the :class:`Simulation` class, which requires many of the same inputs as :class:`Problem`. The two main differences are:1. Variables in formulations that cannot be loaded from `product_data` or `agent_data` will be drawn from independent uniform distributions.2. True parameters and the distribution of unobserved product characteristics are specified.First, we'll use :func:`build_id_data` to build market and firm IDs for a model in which there are $T = 50$ markets, and in each market $t$, a total of $J_t = 20$ products produced by $F = 10$ firms. | id_data = pyblp.build_id_data(T=50, J=20, F=10) | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
Next, we'll create an :class:`Integration` configuration to build agent data according to a Gauss-Hermite product rule that exactly integrates polynomials of degree $2 \times 9 - 1 = 17$ or less. | integration = pyblp.Integration('product', 9)
integration | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
We'll then pass these data to :class:`Simulation`. We'll use :class:`Formulation` configurations to create an $X_1$ that consists of a constant, prices, and an exogenous characteristic; an $X_2$ that consists only of the same exogenous characteristic; and an $X_3$ that consists of the common exogenous characteristic and a cost-shifter. | simulation = pyblp.Simulation(
product_formulations=(
pyblp.Formulation('1 + prices + x'),
pyblp.Formulation('0 + x'),
pyblp.Formulation('0 + x + z')
),
beta=[1, -2, 2],
sigma=1,
gamma=[1, 4],
product_data=id_data,
integration=integration,
seed=0
)
simulation | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
When :class:`Simulation` is initialized, it constructs :attr:`Simulation.agent_data` and simulates :attr:`Simulation.product_data`.The :class:`Simulation` can be further configured with other arguments that determine how unobserved product characteristics are simulated and how marginal costs are specified.At this stage, simulated variables are not consistent with true parameters, so we still need to solve the simulation with :meth:`Simulation.replace_endogenous`. This method replaced simulated prices and market shares with values that are consistent with the true parameters. Just like :meth:`ProblemResults.compute_prices`, to do so it iterates over the $\zeta$-markup equation from :ref:`references:Morrow and Skerlos (2011)`. | simulation_results = simulation.replace_endogenous()
simulation_results | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
Now, we can try to recover the true parameters by creating and solving a :class:`Problem`. The convenience method :meth:`SimulationResults.to_problem` constructs some basic "sums of characteristics" BLP instruments that are functions of all exogenous numerical variables in the problem. In this example, excluded demand-side instruments are the cost-shifter `z` and traditional BLP instruments constructed from `x`. Excluded supply-side instruments are traditional BLP instruments constructed from `x` and `z`. | problem = simulation_results.to_problem()
problem | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
We'll choose starting values that are half the true parameters so that the optimization routine has to do some work. Note that since we're jointly estimating the supply side, we need to provide an initial value for the linear coefficient on prices because this parameter cannot be concentrated out of the problem (unlike linear coefficients on exogenous characteristics). | results = problem.solve(
sigma=0.5 * simulation.sigma,
pi=0.5 * simulation.pi,
beta=[None, 0.5 * simulation.beta[1], None],
optimization=pyblp.Optimization('l-bfgs-b', {'gtol': 1e-5})
)
results | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
The parameters seem to have been estimated reasonably well. | np.c_[simulation.beta, results.beta]
np.c_[simulation.gamma, results.gamma]
np.c_[simulation.sigma, results.sigma] | _____no_output_____ | MIT | docs/notebooks/tutorial/simulation.ipynb | Alalalalaki/pyblp |
Softmax exercise*Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the [assignments page](http://vision.stanford.edu/teaching/cs231n/assignments.html) on the course website.*This exercise is analogous to the SVM exercise. You will:- implement a fully-vectorized **loss function** for the Softmax classifier- implement the fully-vectorized expression for its **analytic gradient**- **check your implementation** with numerical gradient- use a validation set to **tune the learning rate and regularization** strength- **optimize** the loss function with **SGD**- **visualize** the final learned weights | import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
from __future__ import print_function
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# for auto-reloading extenrnal modules
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000, num_dev=500):
"""
Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
it for the linear classifier. These are the same steps as we used for the
SVM, but condensed to a single function.
"""
# Load the raw CIFAR-10 data
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
# subsample the data
mask = list(range(num_training, num_training + num_validation))
X_val = X_train[mask]
y_val = y_train[mask]
mask = list(range(num_training))
X_train = X_train[mask]
y_train = y_train[mask]
mask = list(range(num_test))
X_test = X_test[mask]
y_test = y_test[mask]
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]
# Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
# Normalize the data: subtract the mean image
mean_image = np.mean(X_train, axis = 0)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image
# add bias dimension and transform into columns
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev
# Invoke the above function to get our data.
X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = get_CIFAR10_data()
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
print('dev data shape: ', X_dev.shape)
print('dev labels shape: ', y_dev.shape) | Train data shape: (49000, 3073)
Train labels shape: (49000,)
Validation data shape: (1000, 3073)
Validation labels shape: (1000,)
Test data shape: (1000, 3073)
Test labels shape: (1000,)
dev data shape: (500, 3073)
dev labels shape: (500,)
| MIT | assignment1/softmax.ipynb | rahul1990gupta/bcs231n |
Softmax ClassifierYour code for this section will all be written inside **cs231n/classifiers/softmax.py**. | # First implement the naive softmax loss function with nested loops.
# Open the file cs231n/classifiers/softmax.py and implement the
# softmax_loss_naive function.
from cs231n.classifiers.softmax import softmax_loss_naive
import time
# Generate a random softmax weight matrix and use it to compute the loss.
W = np.random.randn(3073, 10) * 0.0001
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)
# As a rough sanity check, our loss should be something close to -log(0.1).
print('loss: %f' % loss)
print('sanity check: %f' % (-np.log(0.1))) | loss: 2.339283
sanity check: 2.302585
| MIT | assignment1/softmax.ipynb | rahul1990gupta/bcs231n |
Inline Question 1:Why do we expect our loss to be close to -log(0.1)? Explain briefly.****Your answer:** *Because it's a random classifier. Since there are 10 classes and a random classifier will correctly classify with 10% probability.* | # Complete the implementation of softmax_loss_naive and implement a (naive)
# version of the gradient that uses nested loops.
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)
# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)
# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)
# Now that we have a naive implementation of the softmax loss function and its gradient,
# implement a vectorized version in softmax_loss_vectorized.
# The two versions should compute the same results, but the vectorized version should be
# much faster.
tic = time.time()
loss_naive, grad_naive = softmax_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('naive loss: %e computed in %fs' % (loss_naive, toc - tic))
from cs231n.classifiers.softmax import softmax_loss_vectorized
tic = time.time()
loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))
# As we did for the SVM, we use the Frobenius norm to compare the two versions
# of the gradient.
grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized))
print('Gradient difference: %f' % grad_difference)
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of over 0.35 on the validation set.
from cs231n.classifiers import Softmax
results = {}
best_val = -1
best_softmax = None
learning_rates = [5e-6, 1e-7, 5e-7]
regularization_strengths = [1e3, 2.5e4, 5e4]
################################################################################
# TODO: #
# Use the validation set to set the learning rate and regularization strength. #
# This should be identical to the validation that you did for the SVM; save #
# the best trained softmax classifer in best_softmax. #
################################################################################
for lr in learning_rates:
for reg in regularization_strengths:
softmax = Softmax()
loss_hist = softmax.train(X_train, y_train, learning_rate=lr, reg=reg,
num_iters=1500, verbose=True)
y_train_pred = softmax.predict(X_train)
y_val_pred = softmax.predict(X_val)
training_accuracy = np.mean(y_train == y_train_pred)
validation_accuracy = np.mean(y_val == y_val_pred)
#append in results
results[(lr,reg)] = (training_accuracy, validation_accuracy)
if validation_accuracy > best_val:
best_val = validation_accuracy
best_softmax = softmax
################################################################################
# END OF YOUR CODE #
################################################################################
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
# evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))
# Visualize the learned weights for each class
w = best_softmax.W[:-1,:] # strip out the bias
w = w.reshape(32, 32, 3, 10)
w_min, w_max = np.min(w), np.max(w)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
plt.subplot(2, 5, i + 1)
# Rescale the weights to be between 0 and 255
wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
plt.imshow(wimg.astype('uint8'))
plt.axis('off')
plt.title(classes[i]) | _____no_output_____ | MIT | assignment1/softmax.ipynb | rahul1990gupta/bcs231n |
`timeseries` package for fastai v2> **`timeseries`** is a Timeseries Classification and Regression package for fastai v2.> It mimics the fastai v2 vision module (fastai2.vision).> This notebook is a tutorial that shows, and trains an end-to-end a timeseries dataset. > The dataset example is the NATOPS dataset (see description here beow).> First, 4 different methods of creation on how to create timeseries dataloaders are presented. > Then, we train a model based on [Inception Time] (https://arxiv.org/pdf/1909.04939.pdf) architecture Credit> timeseries for fastai v2 was inspired by by Ignacio's Oguiza timeseriesAI (https://github.com/timeseriesAI/timeseriesAI.git).> Inception Time model definition is a modified version of [Ignacio Oguiza] (https://github.com/timeseriesAI/timeseriesAI/blob/master/torchtimeseries/models/InceptionTime.py) and [Thomas Capelle] (https://github.com/tcapelle/TimeSeries_fastai/blob/master/inception.py) implementaions Installing **`timeseries`** on local machine as an editable package1- Only if you have not already installed `fastai v2` Install [fastai2](https://dev.fast.ai/Installing) by following the steps described there.2- Install timeseries package by following the instructions here below:```git clone https://github.com/ai-fast-track/timeseries.gitcd timeseriespip install -e .``` pip installing **`timeseries`** from repo either locally or in Google Colab - Start Here Installing fastai v2 | !pip install git+https://github.com/fastai/fastai2.git | Collecting git+https://github.com/fastai/fastai2.git
Cloning https://github.com/fastai/fastai2.git to /tmp/pip-req-build-icognque
Running command git clone -q https://github.com/fastai/fastai2.git /tmp/pip-req-build-icognque
Collecting fastcore
Downloading https://files.pythonhosted.org/packages/5d/e4/62d66b9530a777af12049d20592854eb21a826b7cf6fee96f04bd8cdcbba/fastcore-0.1.12-py3-none-any.whl
Requirement already satisfied: torch>=1.3.0 in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (1.4.0)
Requirement already satisfied: torchvision>=0.5 in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (0.5.0)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (3.1.3)
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (0.25.3)
Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (2.21.0)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (3.13)
Requirement already satisfied: fastprogress>=0.1.22 in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (0.2.2)
Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (6.2.2)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (0.22.1)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (1.4.1)
Requirement already satisfied: spacy in /usr/local/lib/python3.6/dist-packages (from fastai2==0.0.11) (2.1.9)
Requirement already satisfied: dataclasses>='0.7'; python_version < "3.7" in /usr/local/lib/python3.6/dist-packages (from fastcore->fastai2==0.0.11) (0.7)
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from fastcore->fastai2==0.0.11) (1.17.5)
Requirement already satisfied: six in /usr/local/lib/python3.6/dist-packages (from torchvision>=0.5->fastai2==0.0.11) (1.12.0)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->fastai2==0.0.11) (0.10.0)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->fastai2==0.0.11) (2.6.1)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->fastai2==0.0.11) (2.4.6)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->fastai2==0.0.11) (1.1.0)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->fastai2==0.0.11) (2018.9)
Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2==0.0.11) (1.24.3)
Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2==0.0.11) (2.8)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2==0.0.11) (3.0.4)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2==0.0.11) (2019.11.28)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->fastai2==0.0.11) (0.14.1)
Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (2.0.3)
Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (1.0.2)
Requirement already satisfied: preshed<2.1.0,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (2.0.1)
Requirement already satisfied: plac<1.0.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (0.9.6)
Requirement already satisfied: wasabi<1.1.0,>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (0.6.0)
Requirement already satisfied: srsly<1.1.0,>=0.0.6 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (1.0.1)
Requirement already satisfied: thinc<7.1.0,>=7.0.8 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (7.0.8)
Requirement already satisfied: blis<0.3.0,>=0.2.2 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2==0.0.11) (0.2.4)
Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from kiwisolver>=1.0.1->matplotlib->fastai2==0.0.11) (45.1.0)
Requirement already satisfied: tqdm<5.0.0,>=4.10.0 in /usr/local/lib/python3.6/dist-packages (from thinc<7.1.0,>=7.0.8->spacy->fastai2==0.0.11) (4.28.1)
Building wheels for collected packages: fastai2
Building wheel for fastai2 (setup.py) ... [?25l[?25hdone
Created wheel for fastai2: filename=fastai2-0.0.11-cp36-none-any.whl size=179392 sha256=69eaf43720cb7cce9ee55b2819763266646b3804b779da3bb5729a15741b766e
Stored in directory: /tmp/pip-ephem-wheel-cache-ihi2rkgx/wheels/38/fd/31/ec7df01a47c0c9fafe85a1af76b59a86caf47ec649710affa8
Successfully built fastai2
Installing collected packages: fastcore, fastai2
Successfully installed fastai2-0.0.11 fastcore-0.1.12
| Apache-2.0 | index.ipynb | Massachute/TS |
Installing `timeseries` package from github | !pip install git+https://github.com/ai-fast-track/timeseries.git | Collecting git+https://github.com/ai-fast-track/timeseries.git
Cloning https://github.com/ai-fast-track/timeseries.git to /tmp/pip-req-build-2010puda
Running command git clone -q https://github.com/ai-fast-track/timeseries.git /tmp/pip-req-build-2010puda
Requirement already satisfied: matplotlib in /usr/local/lib/python3.6/dist-packages (from timeseries==0.0.2) (3.1.3)
Requirement already satisfied: fastai2 in /usr/local/lib/python3.6/dist-packages (from timeseries==0.0.2) (0.0.11)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->timeseries==0.0.2) (2.4.6)
Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->timeseries==0.0.2) (2.6.1)
Requirement already satisfied: numpy>=1.11 in /usr/local/lib/python3.6/dist-packages (from matplotlib->timeseries==0.0.2) (1.17.5)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib->timeseries==0.0.2) (0.10.0)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib->timeseries==0.0.2) (1.1.0)
Requirement already satisfied: pillow in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (6.2.2)
Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (0.25.3)
Requirement already satisfied: spacy in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (2.1.9)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (1.4.1)
Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (0.22.1)
Requirement already satisfied: fastprogress>=0.1.22 in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (0.2.2)
Requirement already satisfied: torchvision>=0.5 in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (0.5.0)
Requirement already satisfied: torch>=1.3.0 in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (1.4.0)
Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (2.21.0)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (3.13)
Requirement already satisfied: fastcore in /usr/local/lib/python3.6/dist-packages (from fastai2->timeseries==0.0.2) (0.1.12)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.1->matplotlib->timeseries==0.0.2) (1.12.0)
Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from kiwisolver>=1.0.1->matplotlib->timeseries==0.0.2) (45.1.0)
Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->fastai2->timeseries==0.0.2) (2018.9)
Requirement already satisfied: srsly<1.1.0,>=0.0.6 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (1.0.1)
Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (1.0.2)
Requirement already satisfied: thinc<7.1.0,>=7.0.8 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (7.0.8)
Requirement already satisfied: plac<1.0.0,>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (0.9.6)
Requirement already satisfied: preshed<2.1.0,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (2.0.1)
Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (2.0.3)
Requirement already satisfied: blis<0.3.0,>=0.2.2 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (0.2.4)
Requirement already satisfied: wasabi<1.1.0,>=0.2.0 in /usr/local/lib/python3.6/dist-packages (from spacy->fastai2->timeseries==0.0.2) (0.6.0)
Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->fastai2->timeseries==0.0.2) (0.14.1)
Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2->timeseries==0.0.2) (2.8)
Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2->timeseries==0.0.2) (3.0.4)
Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2->timeseries==0.0.2) (1.24.3)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->fastai2->timeseries==0.0.2) (2019.11.28)
Requirement already satisfied: dataclasses>='0.7'; python_version < "3.7" in /usr/local/lib/python3.6/dist-packages (from fastcore->fastai2->timeseries==0.0.2) (0.7)
Requirement already satisfied: tqdm<5.0.0,>=4.10.0 in /usr/local/lib/python3.6/dist-packages (from thinc<7.1.0,>=7.0.8->spacy->fastai2->timeseries==0.0.2) (4.28.1)
Building wheels for collected packages: timeseries
Building wheel for timeseries (setup.py) ... [?25l[?25hdone
Created wheel for timeseries: filename=timeseries-0.0.2-cp36-none-any.whl size=349967 sha256=5c4dc9e779bf83f095cdb40069fe8c488f541b8154daaad64ab1b3f9d8fe380f
Stored in directory: /tmp/pip-ephem-wheel-cache-dgali9hg/wheels/35/01/01/4fdd69c029e9537c05914ee49520e9d36edaa9b2636f089bfc
Successfully built timeseries
Installing collected packages: timeseries
Successfully installed timeseries-0.0.2
| Apache-2.0 | index.ipynb | Massachute/TS |
*pip Installing - End Here* `Usage` | %reload_ext autoreload
%autoreload 2
%matplotlib inline
from fastai2.basics import *
# hide
# Only for Windows users because symlink to `timeseries` folder is not recognized by Windows
import sys
sys.path.append("..")
from timeseries.all import * | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Tutorial on timeseries package for fastai v2 Example : NATOS dataset Right Arm vs Left Arm (3: 'Not clear' Command (see picture here above)) DescriptionThe data is generated by sensors on the hands, elbows, wrists and thumbs. The data are the x,y,z coordinates for each of the eight locations. The order of the data is as follows: Channels (24)0. Hand tip left, X coordinate1. Hand tip left, Y coordinate2. Hand tip left, Z coordinate3. Hand tip right, X coordinate4. Hand tip right, Y coordinate5. Hand tip right, Z coordinate6. Elbow left, X coordinate7. Elbow left, Y coordinate8. Elbow left, Z coordinate9. Elbow right, X coordinate10. Elbow right, Y coordinate11. Elbow right, Z coordinate12. Wrist left, X coordinate13. Wrist left, Y coordinate14. Wrist left, Z coordinate15. Wrist right, X coordinate16. Wrist right, Y coordinate17. Wrist right, Z coordinate18. Thumb left, X coordinate19. Thumb left, Y coordinate20. Thumb left, Z coordinate21. Thumb right, X coordinate22. Thumb right, Y coordinate23. Thumb right, Z coordinate Classes (6)The six classes are separate actions, with the following meaning: 1: I have command 2: All clear 3: Not clear 4: Spread wings 5: Fold wings 6: Lock wings Download data using `download_unzip_data_UCR(dsname=dsname)` method | dsname = 'NATOPS' #'NATOPS', 'LSST', 'Wine', 'Epilepsy', 'HandMovementDirection'
# url = 'http://www.timeseriesclassification.com/Downloads/NATOPS.zip'
path = unzip_data(URLs_TS.NATOPS)
path | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Why do I have to concatenate train and test data?Both Train and Train dataset contains 180 samples each. We concatenate them in order to have one big dataset and then split into train and valid dataset using our own split percentage (20%, 30%, or whatever number you see fit) | fname_train = f'{dsname}_TRAIN.arff'
fname_test = f'{dsname}_TEST.arff'
fnames = [path/fname_train, path/fname_test]
fnames
data = TSData.from_arff(fnames)
print(data)
items = data.get_items()
idx = 1
x1, y1 = data.x[idx], data.y[idx]
y1
# You can select any channel to display buy supplying a list of channels and pass it to `chs` argument
# LEFT ARM
# show_timeseries(x1, title=y1, chs=[0,1,2,6,7,8,12,13,14,18,19,20])
# RIGHT ARM
# show_timeseries(x1, title=y1, chs=[3,4,5,9,10,11,15,16,17,21,22,23])
# ?show_timeseries(x1, title=y1, chs=range(0,24,3)) # Only the x axis coordinates
seed = 42
splits = RandomSplitter(seed=seed)(range_of(items)) #by default 80% for train split and 20% for valid split are chosen
splits | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Using `Datasets` class Creating a Datasets object | tfms = [[ItemGetter(0), ToTensorTS()], [ItemGetter(1), Categorize()]]
# Create a dataset
ds = Datasets(items, tfms, splits=splits)
ax = show_at(ds, 2, figsize=(1,1)) | 3.0
| Apache-2.0 | index.ipynb | Massachute/TS |
Create a `Dataloader` objects 1st method : using `Datasets` object | bs = 128
# Normalize at batch time
tfm_norm = Normalize(scale_subtype = 'per_sample_per_channel', scale_range=(0, 1)) # per_sample , per_sample_per_channel
# tfm_norm = Standardize(scale_subtype = 'per_sample')
batch_tfms = [tfm_norm]
dls1 = ds.dataloaders(bs=bs, val_bs=bs * 2, after_batch=batch_tfms, num_workers=0, device=default_device())
dls1.show_batch(max_n=9, chs=range(0,12,3)) | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Using `DataBlock` class 2nd method : using `DataBlock` and `DataBlock.get_items()` | getters = [ItemGetter(0), ItemGetter(1)]
tsdb = DataBlock(blocks=(TSBlock, CategoryBlock),
get_items=get_ts_items,
getters=getters,
splitter=RandomSplitter(seed=seed),
batch_tfms = batch_tfms)
tsdb.summary(fnames)
# num_workers=0 is Microsoft Windows
dls2 = tsdb.dataloaders(fnames, num_workers=0, device=default_device())
dls2.show_batch(max_n=9, chs=range(0,12,3)) | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
3rd method : using `DataBlock` and passing `items` object to the `DataBlock.dataloaders()` | getters = [ItemGetter(0), ItemGetter(1)]
tsdb = DataBlock(blocks=(TSBlock, CategoryBlock),
getters=getters,
splitter=RandomSplitter(seed=seed))
dls3 = tsdb.dataloaders(data.get_items(), batch_tfms=batch_tfms, num_workers=0, device=default_device())
dls3.show_batch(max_n=9, chs=range(0,12,3)) | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
4th method : using `TSDataLoaders` class and `TSDataLoaders.from_files()` | dls4 = TSDataLoaders.from_files(fnames, batch_tfms=batch_tfms, num_workers=0, device=default_device())
dls4.show_batch(max_n=9, chs=range(0,12,3)) | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Train Model | # Number of channels (i.e. dimensions in ARFF and TS files jargon)
c_in = get_n_channels(dls2.train) # data.n_channels
# Number of classes
c_out= dls2.c
c_in,c_out | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Create model | model = inception_time(c_in, c_out).to(device=default_device())
model | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Create Learner object | #Learner
opt_func = partial(Adam, lr=3e-3, wd=0.01)
loss_func = LabelSmoothingCrossEntropy()
learn = Learner(dls2, model, opt_func=opt_func, loss_func=loss_func, metrics=accuracy)
print(learn.summary()) | Sequential (Input shape: ['64 x 24 x 51'])
================================================================
Layer (type) Output Shape Param # Trainable
================================================================
Conv1d 64 x 32 x 51 29,952 True
________________________________________________________________
Conv1d 64 x 32 x 51 14,592 True
________________________________________________________________
Conv1d 64 x 32 x 51 6,912 True
________________________________________________________________
MaxPool1d 64 x 24 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 768 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,128 True
________________________________________________________________
Conv1d 64 x 32 x 51 39,936 True
________________________________________________________________
Conv1d 64 x 32 x 51 19,456 True
________________________________________________________________
Conv1d 64 x 32 x 51 9,216 True
________________________________________________________________
MaxPool1d 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,096 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,128 True
________________________________________________________________
Conv1d 64 x 32 x 51 39,936 True
________________________________________________________________
Conv1d 64 x 32 x 51 19,456 True
________________________________________________________________
Conv1d 64 x 32 x 51 9,216 True
________________________________________________________________
MaxPool1d 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,096 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 128 x 51 16,384 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
Conv1d 64 x 32 x 51 4,128 True
________________________________________________________________
Conv1d 64 x 32 x 51 39,936 True
________________________________________________________________
Conv1d 64 x 32 x 51 19,456 True
________________________________________________________________
Conv1d 64 x 32 x 51 9,216 True
________________________________________________________________
MaxPool1d 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,096 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,128 True
________________________________________________________________
Conv1d 64 x 32 x 51 39,936 True
________________________________________________________________
Conv1d 64 x 32 x 51 19,456 True
________________________________________________________________
Conv1d 64 x 32 x 51 9,216 True
________________________________________________________________
MaxPool1d 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,096 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,128 True
________________________________________________________________
Conv1d 64 x 32 x 51 39,936 True
________________________________________________________________
Conv1d 64 x 32 x 51 19,456 True
________________________________________________________________
Conv1d 64 x 32 x 51 9,216 True
________________________________________________________________
MaxPool1d 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 32 x 51 4,096 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
ReLU 64 x 128 x 51 0 False
________________________________________________________________
Conv1d 64 x 128 x 51 16,384 True
________________________________________________________________
BatchNorm1d 64 x 128 x 51 256 True
________________________________________________________________
AdaptiveAvgPool1d 64 x 128 x 1 0 False
________________________________________________________________
AdaptiveMaxPool1d 64 x 128 x 1 0 False
________________________________________________________________
Flatten 64 x 256 0 False
________________________________________________________________
Linear 64 x 6 1,542 True
________________________________________________________________
Total params: 472,742
Total trainable params: 472,742
Total non-trainable params: 0
Optimizer used: functools.partial(<function Adam at 0x7fb6eb402e18>, lr=0.003, wd=0.01)
Loss function: LabelSmoothingCrossEntropy()
Callbacks:
- TrainEvalCallback
- Recorder
- ProgressCallback
| Apache-2.0 | index.ipynb | Massachute/TS |
LR find | lr_min, lr_steep = learn.lr_find()
lr_min, lr_steep | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Train | #lr_max=1e-3
epochs=30; lr_max=lr_steep; pct_start=.7; moms=(0.95,0.85,0.95); wd=1e-2
learn.fit_one_cycle(epochs, lr_max=lr_max, pct_start=pct_start, moms=moms, wd=wd)
# learn.fit_one_cycle(epochs=20, lr_max=lr_steep) | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Plot loss function | learn.recorder.plot_loss() | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
Show results | learn.show_results(max_n=9, chs=range(0,12,3))
#hide
from nbdev.export import notebook2script
# notebook2script()
notebook2script(fname='index.ipynb')
# #hide
# from nbdev.export2html import _notebook2html
# # notebook2script()
# _notebook2html(fname='index.ipynb') | _____no_output_____ | Apache-2.0 | index.ipynb | Massachute/TS |
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
from sklearn.preprocessing import RobustScaler
from sklearn.linear_model import Lasso
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import StackingRegressor
import warnings
import random
seed = 42
random.seed(seed)
import numpy as np
np.random.seed(seed)
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
df = pd.read_csv('https://raw.githubusercontent.com/mouctarbalde/concrete-strength-prediction/main/Train.csv')
df.head()
columns_name = df.columns.to_list()
columns_name =['Cement',
'Blast_Furnace_Slag',
'Fly_Ash',
'Water',
'Superplasticizer',
'Coarse Aggregate',
'Fine Aggregate',
'Age_day',
'Concrete_compressive_strength']
df.columns = columns_name
df.info()
df.shape
import missingno as ms
ms.matrix(df)
df.isna().sum()
df.describe().T
df.corr()['Concrete_compressive_strength'].sort_values().plot(kind='barh')
plt.title("Correlation based on the target variable.")
plt.show()
sns.heatmap(df.corr(),annot=True)
sns.boxplot(x='Water', y = 'Cement',data=df)
plt.figure(figsize=(15,9))
df.boxplot()
sns.regplot(x='Water', y = 'Cement',data=df) | _____no_output_____ | MIT | Cement_prediction_.ipynb | mouctarbalde/concrete-strength-prediction |
|
As we can see from the above cell there is not correlation between **water** and our target variable. | sns.boxplot(x='Age_day', y = 'Cement',data=df)
sns.regplot(x='Age_day', y = 'Cement',data=df)
X = df.drop('Concrete_compressive_strength',axis=1)
y = df.Concrete_compressive_strength
X.head()
y.head()
X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=.2, random_state=seed)
X_train.shape ,y_train.shape | _____no_output_____ | MIT | Cement_prediction_.ipynb | mouctarbalde/concrete-strength-prediction |
In our case we notice from our analysis the presence of outliers although they are not many we are going to use Robustscaler from sklearn to scale the data.Robust scaler is going to remove the median and put variance to 1 it will also transform the data by removing outliers(24%-75%) is considered. | scale = RobustScaler()
# note we have to fit_transform only on the training data. On your test data you only have to transform.
X_train = scale.fit_transform(X_train)
X_test = scale.transform(X_test)
X_train | _____no_output_____ | MIT | Cement_prediction_.ipynb | mouctarbalde/concrete-strength-prediction |
Model creation Linear Regression | lr = LinearRegression()
lr.fit(X_train,y_train)
pred_lr = lr.predict(X_test)
pred_lr[:10]
mae_lr = mean_absolute_error(y_test,pred_lr)
r2_lr = r2_score(y_test,pred_lr)
print(f'Mean absolute error of linear regression is {mae_lr}')
print(f'R2 score of Linear Regression is {r2_lr}') | Mean absolute error of linear regression is 7.745559243921439
R2 score of Linear Regression is 0.6275531792314843
| MIT | Cement_prediction_.ipynb | mouctarbalde/concrete-strength-prediction |
**Graph for linear regression** the below graph is showing the relationship between the actual and the predicted values. | fig, ax = plt.subplots()
ax.scatter(pred_lr, y_test)
ax.plot([y_test.min(), y_test.max()],[y_test.min(), y_test.max()], color = 'red', marker = "*", markersize = 10) | _____no_output_____ | MIT | Cement_prediction_.ipynb | mouctarbalde/concrete-strength-prediction |
Decision tree Regression | dt = DecisionTreeRegressor(criterion='mae')
dt.fit(X_train,y_train)
pred_dt = dt.predict(X_test)
mae_dt = mean_absolute_error(y_test,pred_dt)
r2_dt = r2_score(y_test,pred_dt)
print(f'Mean absolute error of linear regression is {mae_dt}')
print(f'R2 score of Decision tree regressor is {r2_dt}')
fig, ax = plt.subplots()
plt.title('Linear relationship for decison tree')
ax.scatter(pred_dt, y_test)
ax.plot([y_test.min(), y_test.max()],[y_test.min(), y_test.max()], color = 'red', marker = "*", markersize = 10) | _____no_output_____ | MIT | Cement_prediction_.ipynb | mouctarbalde/concrete-strength-prediction |
Subsets and Splits