File size: 5,320 Bytes
145c9f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
from datasets import load_dataset, Dataset
import pandas as pd
from collections import defaultdict
import pygments
list_languages = ['ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison',
'bluespec', 'c', 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'stan', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme',
'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex',
'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig']
lmap = {'c-sharp':'csharp', 'f-sharp':'fsharp', 'standard-ml':'sml', 'batchfile':'batch','java-server-pages':'jsp'}
extra_columns = [
"hexsha",
"max_stars_repo_path",
"max_stars_repo_name",
"max_stars_repo_head_hexsha",
"max_stars_repo_stars_event_min_datetime",
"max_stars_repo_stars_event_max_datetime",
"max_issues_repo_path",
"max_issues_repo_name",
"max_issues_repo_head_hexsha",
"max_issues_repo_licenses",
"max_issues_count",
"max_issues_repo_issues_event_min_datetime",
"max_issues_repo_issues_event_max_datetime",
"max_forks_repo_path",
"max_forks_repo_name",
"max_forks_repo_head_hexsha",
"max_forks_repo_licenses",
"max_forks_count",
"max_forks_repo_forks_event_min_datetime",
"max_forks_repo_forks_event_max_datetime",
]
seed = 0
size = 20_000
buffer_size = 40_000
max_data_per_ext = 1000
df = pd.DataFrame(
columns=[
"extension",
"language",
"count",
"low_alphanum_count",
"long_lines_count",
"non_lexable_count",
]
)
def low_alphanum(example):
return {"low_alphanum": example["alphanum_fraction"] < 0.25}
def long_line(example):
return {"long_lines": example["max_line_length"] > 1000 or example["avg_line_length"] > 100}
def pygments_language_id_to_thestack_language_id(str):
if str in lmap:
return lmap[str]
return str
def can_lex_without_errors(lexer, contents: str):
tokens = pygments.lex(contents, lexer)
for (tok_type, tok_text) in tokens:
if tok_type == pygments.token.Token.Error:
return False
return True
def lexable(example, language):
try:
lexer = pygments.lexers.get_lexer_by_name(pygments_language_id_to_thestack_language_id(language))
except:
return {"lexable": "notfound"}
return {"lexable": can_lex_without_errors(lexer, example["content"])}
for language in list_languages:
thestack = load_dataset(
"bigcode/the-stack",
use_auth_token=True,
split="train",
streaming=True,
data_dir=f"data/{language}",
)
thestack = thestack.shuffle(seed=seed, buffer_size=buffer_size)
print(f"subset {language} ready, now selecting {size} samples")
# 20k subset of random samples from ds, convert to Datasets
small_ds = list(thestack.take(size))
small_ds = Dataset.from_pandas(pd.DataFrame(data=small_ds))
small_ds = small_ds.remove_columns(extra_columns)
print(f"Dataset of {size} samples of {language} creaded")
# get extension distribution
dict_extensions = defaultdict(int)
for extension in small_ds["ext"]:
dict_extensions[extension] += 1
dict_extensions = dict(dict_extensions)
print(f"Initial extension dist: {dict_extensions}")
# filter for extension
for ext in dict_extensions:
ext_ds = small_ds.filter(lambda x: x["ext"] == ext)
real_count = min(max_data_per_ext, len(ext_ds))
ext_ds = ext_ds.select(range(real_count))
# let's add extra info
ext_ds = ext_ds.map(low_alphanum)
ext_ds = ext_ds.map(long_line)
ext_ds = ext_ds.map(lambda x: lexable(x, language))
low_alphanum_count = sum(
low_alphanum for low_alphanum in ext_ds["low_alphanum"]
)
long_lines_count = sum(long_line for long_line in ext_ds["long_lines"])
non_lexable_count = sum(not lexable for lexable in ext_ds["lexable"])
new_dict = {
"extension": ext,
"language": language,
"count": real_count,
"low_alphanum_count": low_alphanum_count,
"long_lines_count": long_lines_count,
"non_lexable_count": non_lexable_count,
}
df = df.append(new_dict, ignore_index=True)
print(f"New extension count: {new_dict}")
path = f"./data/{language}/{ext}/data.json"
ext_ds.to_json(path)
print(f"Subset of langugae: {language}, and extension: {ext} saved")
# save the dataframe to csv
df.to_csv("./data/extension_distribution.csv") |