File size: 5,320 Bytes
145c9f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from datasets import load_dataset, Dataset
import pandas as pd
from collections import defaultdict
import pygments

list_languages = ['ada', 'agda', 'alloy', 'antlr', 'applescript', 'assembly', 'augeas', 'awk', 'batchfile', 'bison',
 'bluespec', 'c', 'c++', 'c-sharp', 'clojure', 'cmake', 'coffeescript', 'common-lisp', 'css', 'cuda', 'dart', 'dockerfile', 'elixir',
'elm', 'emacs-lisp','erlang', 'f-sharp', 'fortran', 'glsl', 'go', 'groovy', 'haskell','html', 'idris', 'isabelle', 'java',
'java-server-pages', 'javascript', 'stan', 'julia', 'kotlin', 'lean', 'literate-agda', 'literate-coffeescript', 'literate-haskell',
 'lua', 'makefile', 'maple', 'markdown', 'mathematica', 'matlab', 'ocaml', 'pascal', 'perl', 'php', 'powershell', 'prolog',
  'protocol-buffer', 'python', 'r', 'racket', 'restructuredtext', 'rmarkdown', 'ruby', 'rust', 'sas', 'scala', 'scheme', 
  'shell', 'smalltalk', 'solidity', 'sparql', 'sql', 'stan', 'standard-ml', 'stata', 'systemverilog', 'tcl', 'tcsh', 'tex', 
  'thrift', 'typescript', 'verilog', 'vhdl', 'visual-basic', 'xslt', 'yacc', 'zig']

lmap = {'c-sharp':'csharp', 'f-sharp':'fsharp', 'standard-ml':'sml', 'batchfile':'batch','java-server-pages':'jsp'}

extra_columns = [
            "hexsha",
            "max_stars_repo_path",
            "max_stars_repo_name",
            "max_stars_repo_head_hexsha",
            "max_stars_repo_stars_event_min_datetime",
            "max_stars_repo_stars_event_max_datetime",
            "max_issues_repo_path",
            "max_issues_repo_name",
            "max_issues_repo_head_hexsha",
            "max_issues_repo_licenses",
            "max_issues_count",
            "max_issues_repo_issues_event_min_datetime",
            "max_issues_repo_issues_event_max_datetime",
            "max_forks_repo_path",
            "max_forks_repo_name",
            "max_forks_repo_head_hexsha",
            "max_forks_repo_licenses",
            "max_forks_count",
            "max_forks_repo_forks_event_min_datetime",
            "max_forks_repo_forks_event_max_datetime",
        ]

seed = 0
size = 20_000
buffer_size = 40_000
max_data_per_ext = 1000
df = pd.DataFrame(
    columns=[
        "extension",
        "language",
        "count",
        "low_alphanum_count",
        "long_lines_count",
        "non_lexable_count",
    ]
)

def low_alphanum(example):
    return {"low_alphanum": example["alphanum_fraction"] < 0.25}

def long_line(example):
    return {"long_lines": example["max_line_length"] > 1000 or example["avg_line_length"] > 100}

def pygments_language_id_to_thestack_language_id(str):
    if str in lmap:
        return lmap[str]
    return str

def can_lex_without_errors(lexer, contents: str):
    tokens = pygments.lex(contents, lexer)
    for (tok_type, tok_text) in tokens:
        if tok_type == pygments.token.Token.Error:
            return False
    return True

def lexable(example, language):
    try:
        lexer = pygments.lexers.get_lexer_by_name(pygments_language_id_to_thestack_language_id(language))
    except:
        return {"lexable": "notfound"}
    return {"lexable": can_lex_without_errors(lexer, example["content"])}


for language in list_languages:
    thestack = load_dataset(
        "bigcode/the-stack",
        use_auth_token=True,
        split="train",
        streaming=True,
        data_dir=f"data/{language}",
    )
    thestack = thestack.shuffle(seed=seed, buffer_size=buffer_size)
    print(f"subset {language} ready, now selecting {size} samples")

    # 20k subset of random samples from ds, convert to Datasets
    small_ds = list(thestack.take(size))
    small_ds = Dataset.from_pandas(pd.DataFrame(data=small_ds))
    small_ds = small_ds.remove_columns(extra_columns)
    print(f"Dataset of {size} samples of {language} creaded")

    # get extension distribution
    dict_extensions = defaultdict(int)
    for extension in small_ds["ext"]:
        dict_extensions[extension] += 1
    dict_extensions = dict(dict_extensions)
    print(f"Initial extension dist: {dict_extensions}")

    # filter for extension
    for ext in dict_extensions:
        ext_ds = small_ds.filter(lambda x: x["ext"] == ext)
        real_count = min(max_data_per_ext, len(ext_ds))
        ext_ds = ext_ds.select(range(real_count))

        # let's add extra info
        ext_ds = ext_ds.map(low_alphanum)
        ext_ds = ext_ds.map(long_line)
        ext_ds = ext_ds.map(lambda x: lexable(x, language))

        low_alphanum_count = sum(
            low_alphanum for low_alphanum in ext_ds["low_alphanum"]
        )
        long_lines_count = sum(long_line for long_line in ext_ds["long_lines"])
        non_lexable_count = sum(not lexable for lexable in ext_ds["lexable"])

        new_dict = {
            "extension": ext,
            "language": language,
            "count": real_count,
            "low_alphanum_count": low_alphanum_count,
            "long_lines_count": long_lines_count,
            "non_lexable_count": non_lexable_count,
        }
        df = df.append(new_dict, ignore_index=True)
        print(f"New extension count: {new_dict}")

        path = f"./data/{language}/{ext}/data.json"
        ext_ds.to_json(path)
        print(f"Subset of langugae: {language}, and extension: {ext} saved")

# save the dataframe to csv
df.to_csv("./data/extension_distribution.csv")