path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
129022563/cell_46
[ "text_plain_output_1.png" ]
from plotly.subplots import make_subplots import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import plotly.graph_objects as go train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) test_null = test_null.sort_values(by=0, ascending=False) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] fig = make_subplots(rows = 1, cols = 2, column_titles = ["Train Data","Test Data"], x_title = "Missing Values") fig.show() train_null.index fig.add_trace(go.Bar(x=train_null[0], y=train_null.index, orientation='h'), 1, 1) fig.add_trace(go.Bar(x=test_null[0], y=test_null.index, orientation='h'), 1, 2) fig.update_layout(showlegend=False, title_text='Column wise Null Value Distribution', title_x=0.5)
code
129022563/cell_53
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 train.iloc[:, :-1].describe().T.sort_values(by='std', ascending=False) test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) train_null = pd.DataFrame(test.isna().sum()) train_null = train_null.sort_values(by=0, ascending=False)[:-1] missing_train_row = train.isna().sum(axis=1) missing_train_row = pd.DataFrame(missing_train_row.value_counts() / train.shape[0]).reset_index() train.isna().sum(axis=1).unique() train.shape[0] train.isna().sum(axis=1).value_counts() train.isna().sum(axis=1)
code
129022563/cell_10
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum()
code
129022563/cell_37
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/spaceship-titanic/train.csv') test = pd.read_csv('../input/spaceship-titanic/test.csv') submission = pd.read_csv('../input/spaceship-titanic/sample_submission.csv') RANDOM_STATE = 12 STRATEGY = 'median' train.shape train.count() train.isna().sum() train.drop(columns=['PassengerId'], inplace=True) test.drop(columns=['PassengerId'], inplace=True) TARGET = 'Transported' FEATURES = [col for col in train.columns if col != TARGET] RANDOM_STATE = 12 test.isna().sum() test_null = pd.DataFrame(test.isna().sum()) test_null
code
1007330/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company') dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) g = sns.FacetGrid(data, hue='left', aspect=4) g.map(sns.kdeplot, 'average_montly_hours', shade=True) g.set(xlim=(0, data['average_montly_hours'].max())) g.add_legend()
code
1007330/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company')
code
1007330/cell_9
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr corr_left = pd.DataFrame(corr['left'].drop('left')) corr_left.sort_values(by='left', ascending=False)
code
1007330/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company') dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) sns.barplot(x='time_spend_company', y='left', hue='salary', data=data)
code
1007330/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/HR_comma_sep.csv') (data['sales'].unique(), data['salary'].unique())
code
1007330/cell_11
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr corr_left = pd.DataFrame(corr['left'].drop('left')) corr_left.sort_values(by='left', ascending=False) data['avg_hour_project'] = data['average_montly_hours'] * 12 / data['number_project'] data['avg_hour_project_range'] = pd.cut(data['avg_hour_project'], 3) data[['avg_hour_project_range', 'left']].groupby(['avg_hour_project_range']).mean()
code
1007330/cell_19
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company') dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) sns.barplot(x='time_spend_company', y='left', hue='promotion_last_5years', data=data)
code
1007330/cell_18
[ "text_html_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) left = data[data['left'] == 1] not_left = data[data['left'] == 0] f, axrrr = plt.subplots(1, 2, sharey=True, sharex=True) axrrr[0].hist('time_spend_company', data=left, bins=10) axrrr[0].set_title('Left') axrrr[0].set_xlabel('Time Spend at the Company') axrrr[0].set_ylabel('Number of Observations') axrrr[1].hist('time_spend_company', data=not_left, bins=10) axrrr[1].set_title('Not Left') axrrr[1].set_xlabel('time_spend_company') axrrr[1].set_ylabel('Number of Observations')
code
1007330/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company') dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) g = sns.FacetGrid(data, hue='left', aspect=4) g.map(sns.kdeplot, 'average_montly_hours', shade=True) g.set(xlim=(0, data['average_montly_hours'].max())) g.add_legend() g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'average_montly_hours') (np.mean(data[data['left'] == 1]['average_montly_hours']), np.mean(data[data['left'] == 0]['average_montly_hours'])) data.loc[data['average_montly_hours'] <= 167.333, 'average_montly_hours'] = 0 data.loc[(data['average_montly_hours'] > 167.333) & (data['average_montly_hours'] <= 238.667), 'average_montly_hours'] = 1 data.loc[(data['average_montly_hours'] > 238.667) & (data['average_montly_hours'] <= 310.0), 'average_montly_hours'] = 2 data.drop(['avg_mon_hours_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'number_project') print('left_median : ', np.median(data[data['left'] == 1]['number_project'])) print('not_left_median : ', np.median(data[data['left'] == 0]['number_project']))
code
1007330/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr sns.heatmap(corr, xticklabels=corr.columns.values, yticklabels=corr.columns.values) sns.plt.title('Heatmap of Correlation Matrix') corr
code
1007330/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company') dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) sns.barplot(x='time_spend_company', y='left', data=data) sns.plt.title('Left over time spend at company (barplot)') sns.factorplot(x='time_spend_company', y='left', data=data, size=5) sns.plt.title('Left over time spend at company (factorplot)')
code
1007330/cell_3
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/HR_comma_sep.csv') data.head()
code
1007330/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr corr_left = pd.DataFrame(corr['left'].drop('left')) corr_left.sort_values(by='left', ascending=False) data['avg_hour_project'] = data['average_montly_hours'] * 12 / data['number_project'] data['avg_hour_project_range'] = pd.cut(data['avg_hour_project'], 3) data[['avg_hour_project_range', 'left']].groupby(['avg_hour_project_range']).mean() data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) data['avg_mon_hours_range'] = pd.cut(data['average_montly_hours'], 3) data[['avg_mon_hours_range', 'left']].groupby(['avg_mon_hours_range']).mean()
code
1007330/cell_22
[ "text_plain_output_1.png", "image_output_2.png", "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company') dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) g = sns.FacetGrid(data, hue='left', aspect=4) g.map(sns.kdeplot, 'average_montly_hours', shade=True) g.set(xlim=(0, data['average_montly_hours'].max())) g.add_legend() g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'average_montly_hours') (np.mean(data[data['left'] == 1]['average_montly_hours']), np.mean(data[data['left'] == 0]['average_montly_hours']))
code
1007330/cell_27
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import pandas as pd import seaborn as sns data = pd.read_csv('../input/HR_comma_sep.csv') corr = data.corr() corr = corr corr data.loc[data['avg_hour_project'] <= 749.333, 'avg_hour_project'] = 0 data.loc[(data['avg_hour_project'] > 749.333) & (data['avg_hour_project'] <= 1304.667), 'avg_hour_project'] = 1 data.loc[(data['avg_hour_project'] > 1304.667) & (data['avg_hour_project'] <= 1860.0), 'avg_hour_project'] = 2 data.drop(['avg_hour_project_range'], axis=1, inplace=True) g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'time_spend_company') dropdata = data[data['time_spend_company'] >= 8] data.drop(dropdata.index, inplace=True) g = sns.FacetGrid(data, hue='left', aspect=4) g.map(sns.kdeplot, 'average_montly_hours', shade=True) g.set(xlim=(0, data['average_montly_hours'].max())) g.add_legend() g = sns.FacetGrid(data, col='left') g.map(sns.boxplot, 'average_montly_hours') (np.mean(data[data['left'] == 1]['average_montly_hours']), np.mean(data[data['left'] == 0]['average_montly_hours'])) data.loc[data['average_montly_hours'] <= 167.333, 'average_montly_hours'] = 0 data.loc[(data['average_montly_hours'] > 167.333) & (data['average_montly_hours'] <= 238.667), 'average_montly_hours'] = 1 data.loc[(data['average_montly_hours'] > 238.667) & (data['average_montly_hours'] <= 310.0), 'average_montly_hours'] = 2 data.drop(['avg_mon_hours_range'], axis=1, inplace=True) sns.barplot(x='number_project', y='left', data=data) sns.plt.title('Left over Number of project')
code
1007330/cell_5
[ "text_html_output_1.png" ]
import pandas as pd data = pd.read_csv('../input/HR_comma_sep.csv') data.info()
code
89130759/cell_21
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] test, train = (df_merge[df_merge['ind'].eq('test')], df_merge[df_merge['ind'].eq('train')]) test.drop(['TARGET', 'ind'], axis=1, inplace=True) train.drop(['ind'], axis=1, inplace=True) from sklearn.feature_selection import VarianceThreshold as VT var_thres = VT(threshold=0) var_thres.fit(X_train) const_cols = [col for col in X_train.columns if col not in X_train.columns[var_thres.get_support()]] X_train.drop(columns=const_cols, axis=1, inplace=True) X_valid.drop(columns=const_cols, axis=1, inplace=True) test.drop(columns=const_cols, axis=1, inplace=True) (X_train.shape, X_valid.shape, test.shape) def correlation(dataset, threshold): col_corr = set() corr_matrix = dataset.corr() for i in range(len(corr_matrix.columns)): for j in range(i): if corr_matrix.iloc[i, j] > threshold: colname = corr_matrix.columns[i] col_corr.add(colname) return col_corr corr_features = correlation(X_train, 0.85) X_train.drop(columns=corr_features, axis=1, inplace=True) X_valid.drop(columns=corr_features, axis=1, inplace=True) test.drop(columns=corr_features, axis=1, inplace=True) (X_train.shape, X_valid.shape, test.shape)
code
89130759/cell_9
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] test, train = (df_merge[df_merge['ind'].eq('test')], df_merge[df_merge['ind'].eq('train')]) test.drop(['TARGET', 'ind'], axis=1, inplace=True) train.drop(['ind'], axis=1, inplace=True)
code
89130759/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.head()
code
89130759/cell_6
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape def get_cols_with_missing_values(DataFrame): missing_na_columns = DataFrame.isnull().sum() return missing_na_columns[missing_na_columns > 0] get_cols_with_missing_values(df_merge)
code
89130759/cell_2
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_train.head()
code
89130759/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] test, train = (df_merge[df_merge['ind'].eq('test')], df_merge[df_merge['ind'].eq('train')]) test.drop(['TARGET', 'ind'], axis=1, inplace=True) train.drop(['ind'], axis=1, inplace=True) test.head()
code
89130759/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] test, train = (df_merge[df_merge['ind'].eq('test')], df_merge[df_merge['ind'].eq('train')]) test.drop(['TARGET', 'ind'], axis=1, inplace=True) train.drop(['ind'], axis=1, inplace=True) from sklearn.feature_selection import VarianceThreshold as VT var_thres = VT(threshold=0) var_thres.fit(X_train) const_cols = [col for col in X_train.columns if col not in X_train.columns[var_thres.get_support()]] X_train.drop(columns=const_cols, axis=1, inplace=True) X_valid.drop(columns=const_cols, axis=1, inplace=True) test.drop(columns=const_cols, axis=1, inplace=True) (X_train.shape, X_valid.shape, test.shape) def correlation(dataset, threshold): col_corr = set() corr_matrix = dataset.corr() for i in range(len(corr_matrix.columns)): for j in range(i): if corr_matrix.iloc[i, j] > threshold: colname = corr_matrix.columns[i] col_corr.add(colname) return col_corr corr_features = correlation(X_train, 0.85) print('Features with high correlation ', corr_features)
code
89130759/cell_1
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89130759/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] print(cat_cols)
code
89130759/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] print(num_cols)
code
89130759/cell_15
[ "text_plain_output_1.png" ]
from sklearn.feature_selection import VarianceThreshold as VT var_thres = VT(threshold=0) var_thres.fit(X_train) const_cols = [col for col in X_train.columns if col not in X_train.columns[var_thres.get_support()]] print(const_cols)
code
89130759/cell_16
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] test, train = (df_merge[df_merge['ind'].eq('test')], df_merge[df_merge['ind'].eq('train')]) test.drop(['TARGET', 'ind'], axis=1, inplace=True) train.drop(['ind'], axis=1, inplace=True) from sklearn.feature_selection import VarianceThreshold as VT var_thres = VT(threshold=0) var_thres.fit(X_train) const_cols = [col for col in X_train.columns if col not in X_train.columns[var_thres.get_support()]] X_train.drop(columns=const_cols, axis=1, inplace=True) X_valid.drop(columns=const_cols, axis=1, inplace=True) test.drop(columns=const_cols, axis=1, inplace=True)
code
89130759/cell_3
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_test.head()
code
89130759/cell_17
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] test, train = (df_merge[df_merge['ind'].eq('test')], df_merge[df_merge['ind'].eq('train')]) test.drop(['TARGET', 'ind'], axis=1, inplace=True) train.drop(['ind'], axis=1, inplace=True) from sklearn.feature_selection import VarianceThreshold as VT var_thres = VT(threshold=0) var_thres.fit(X_train) const_cols = [col for col in X_train.columns if col not in X_train.columns[var_thres.get_support()]] X_train.drop(columns=const_cols, axis=1, inplace=True) X_valid.drop(columns=const_cols, axis=1, inplace=True) test.drop(columns=const_cols, axis=1, inplace=True) (X_train.shape, X_valid.shape, test.shape)
code
89130759/cell_14
[ "text_html_output_1.png" ]
from sklearn.feature_selection import VarianceThreshold as VT var_thres = VT(threshold=0) var_thres.fit(X_train)
code
89130759/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape cat_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype == 'object'] num_cols = [cname for cname in df_merge.columns if df_merge[cname].dtype != 'object'] test, train = (df_merge[df_merge['ind'].eq('test')], df_merge[df_merge['ind'].eq('train')]) test.drop(['TARGET', 'ind'], axis=1, inplace=True) train.drop(['ind'], axis=1, inplace=True) train.head()
code
89130759/cell_5
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df_train = pd.read_csv('/kaggle/input/santander-customer-satisfaction/train.csv') df_test = pd.read_csv('/kaggle/input/santander-customer-satisfaction/test.csv') df_merge = pd.concat([df_test.assign(ind='test'), df_train.assign(ind='train')]) df_merge.shape
code
105174887/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns train_eda.isnull().sum() train_final = train_eda.dropna() train_final.isnull().sum() train_final.shape train_final.loc[train_final.Sex == 'female', 'Sex'] = 1 train_final.loc[train_final.Sex == 'male', 'Sex'] = 0 train_final['Sex'] = train_final['Sex'].astype(float) train_final['Sex']
code
105174887/cell_13
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns train_eda.info()
code
105174887/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape
code
105174887/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train.head()
code
105174887/cell_23
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns train_eda.isnull().sum() train_final = train_eda.dropna() train_final.isnull().sum() train_final.shape train_final.loc[train_final.Sex == 'female', 'Sex'] = 1 train_final.loc[train_final.Sex == 'male', 'Sex'] = 0 train_final['Sex'] = train_final['Sex'].astype(float) train_final['Sex'] train_final.loc[train_final.Embarked == 'S', 'Embarked'] = 3 train_final.loc[train_final.Embarked == 'C', 'Embarked'] = 2 train_final.loc[train_final.Embarked == 'Q', 'Embarked'] = 1 train_final['Embarked'] = train_final['Embarked'].astype(float) train_final['Embarked'] train_final.head()
code
105174887/cell_20
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns train_eda.isnull().sum() train_final = train_eda.dropna() train_final.isnull().sum() train_final.shape
code
105174887/cell_6
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train['Embarked']
code
105174887/cell_26
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') test = test.drop(['Pclass', 'Name', 'Cabin'], axis='columns') test.head()
code
105174887/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns
code
105174887/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns train_eda.isnull().sum() train_final = train_eda.dropna() train_final.isnull().sum()
code
105174887/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
105174887/cell_32
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') test = test.drop(['Pclass', 'Name', 'Cabin'], axis='columns') test.isnull().sum() test.loc[test.Sex == 'female', 'Sex'] = 1 test.loc[test.Sex == 'male', 'Sex'] = 0 test['Sex'] = test['Sex'].astype(float) test.loc[test.Embarked == 'S', 'Embarked'] = 3 test.loc[test.Embarked == 'C', 'Embarked'] = 2 test.loc[test.Embarked == 'Q', 'Embarked'] = 1 test['Embarked'] = test['Embarked'].astype(float) test.isnull().sum() test.head()
code
105174887/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum()
code
105174887/cell_15
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns print(train_eda['Pclass'].mean()) print(train_eda['Pclass'].median())
code
105174887/cell_16
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns train_eda.isnull().sum()
code
105174887/cell_31
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') test = test.drop(['Pclass', 'Name', 'Cabin'], axis='columns') test.isnull().sum() test.loc[test.Sex == 'female', 'Sex'] = 1 test.loc[test.Sex == 'male', 'Sex'] = 0 test['Sex'] = test['Sex'].astype(float) test.loc[test.Embarked == 'S', 'Embarked'] = 3 test.loc[test.Embarked == 'C', 'Embarked'] = 2 test.loc[test.Embarked == 'Q', 'Embarked'] = 1 test['Embarked'] = test['Embarked'].astype(float) test.isnull().sum()
code
105174887/cell_14
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns sns.boxplot(x=train_eda['Pclass'])
code
105174887/cell_22
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns train_eda.isnull().sum() train_final = train_eda.dropna() train_final.isnull().sum() train_final.shape train_final.loc[train_final.Sex == 'female', 'Sex'] = 1 train_final.loc[train_final.Sex == 'male', 'Sex'] = 0 train_final['Sex'] = train_final['Sex'].astype(float) train_final['Sex'] train_final.loc[train_final.Embarked == 'S', 'Embarked'] = 3 train_final.loc[train_final.Embarked == 'C', 'Embarked'] = 2 train_final.loc[train_final.Embarked == 'Q', 'Embarked'] = 1 train_final['Embarked'] = train_final['Embarked'].astype(float) train_final['Embarked']
code
105174887/cell_10
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.describe()
code
105174887/cell_27
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') test = test.drop(['Pclass', 'Name', 'Cabin'], axis='columns') test.isnull().sum()
code
105174887/cell_12
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train_eda = train.drop(['PassengerId', 'Name', 'Cabin', 'Ticket'], axis='columns') train_eda.isnull().sum() train_eda.shape train_eda.columns plt.figure(figsize=(10, 7)) sns.heatmap(data=train_eda.corr(), annot=True, cmap='YlGnBu')
code
105174887/cell_5
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train.info()
code
90157584/cell_21
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) train.head()
code
90157584/cell_9
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.heatmap(test.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_25
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) sns.heatmap(train.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_4
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') test.head()
code
90157584/cell_23
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) sns.heatmap(test.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_30
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) pd.get_dummies(train['Embarked'], drop_first=True).head()
code
90157584/cell_20
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') test.drop('Cabin', axis=1, inplace=True) test.head()
code
90157584/cell_29
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) test.info()
code
90157584/cell_26
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) sns.heatmap(train.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_28
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) train.info()
code
90157584/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.heatmap(train.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') sns.heatmap(train.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_17
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') sns.heatmap(test.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_31
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) pd.get_dummies(test['Embarked'], drop_first=True).head()
code
90157584/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) sns.heatmap(train.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90157584/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') sns.countplot(x='Survived', hue='Pclass', data=train, palette='rainbow')
code
90157584/cell_37
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) train.drop(['Sex', 'Embarked', 'Name', 'Ticket'], axis=1, inplace=True) train.head()
code
90157584/cell_12
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') plt.figure(figsize=(12, 7)) sns.boxplot(x='Pclass', y='Age', data=train, palette='winter')
code
90157584/cell_5
[ "text_html_output_1.png" ]
import pandas as pd train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') train.head()
code
90157584/cell_36
[ "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import seaborn as sns train = pd.read_csv('../input/titanic/train.csv') test = pd.read_csv('../input/titanic/test.csv') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train = train.fillna(train['Embarked'].value_counts().index[0]) test = test.fillna(test['Fare'].value_counts().index[0]) test.drop(['Sex', 'Embarked', 'Name', 'Ticket'], axis=1, inplace=True) test.head()
code
32067553/cell_13
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) def add_daily_measures(df): df.loc[0, 'Daily Cases'] = df.loc[0, 'ConfirmedCases'] df.loc[0, 'Daily Deaths'] = df.loc[0, 'Fatalities'] for i in range(1, len(df)): df.loc[i, 'Daily Cases'] = df.loc[i, 'ConfirmedCases'] - df.loc[i - 1, 'ConfirmedCases'] df.loc[i, 'Daily Deaths'] = df.loc[i, 'Fatalities'] - df.loc[i - 1, 'Fatalities'] df.loc[0, 'Daily Cases'] = 0 df.loc[0, 'Daily Deaths'] = 0 return df df_world = data_train.copy() df_world = df_world.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_world = add_daily_measures(df_world) df_usa = data_train.query("Country_Region=='US'") df_usa = df_usa.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_usa = add_daily_measures(df_usa) df_italy = data_train.query("Country_Region=='Italy'") df_italy = df_italy.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_italy = add_daily_measures(df_italy) df_spain = data_train.query("Country_Region=='Spain'") df_spain = df_spain.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_spain = add_daily_measures(df_spain) df_korea = data_train.query("Country_Region=='Korea, South'") df_korea = df_korea.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_korea = add_daily_measures(df_korea) df_usa.plot(title='USA', y=['Daily Cases', 'Daily Deaths'], x='Date', figsize=(12, 6)) df_italy.plot(title='Italy', y=['Daily Cases', 'Daily Deaths'], x='Date', figsize=(12, 6)) df_spain.plot(title='Spain', y=['Daily Cases', 'Daily Deaths'], x='Date', figsize=(12, 6)) df_korea.plot(title='South Korea', y=['Daily Cases', 'Daily Deaths'], x='Date', figsize=(12, 6))
code
32067553/cell_23
[ "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) def add_daily_measures(df): df.loc[0, 'Daily Cases'] = df.loc[0, 'ConfirmedCases'] df.loc[0, 'Daily Deaths'] = df.loc[0, 'Fatalities'] for i in range(1, len(df)): df.loc[i, 'Daily Cases'] = df.loc[i, 'ConfirmedCases'] - df.loc[i - 1, 'ConfirmedCases'] df.loc[i, 'Daily Deaths'] = df.loc[i, 'Fatalities'] - df.loc[i - 1, 'Fatalities'] df.loc[0, 'Daily Cases'] = 0 df.loc[0, 'Daily Deaths'] = 0 return df df_world = data_train.copy() df_world = df_world.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_world = add_daily_measures(df_world) df_usa = data_train.query("Country_Region=='US'") df_usa = df_usa.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_usa = add_daily_measures(df_usa) df_italy = data_train.query("Country_Region=='Italy'") df_italy = df_italy.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_italy = add_daily_measures(df_italy) df_spain = data_train.query("Country_Region=='Spain'") df_spain = df_spain.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_spain = add_daily_measures(df_spain) df_korea = data_train.query("Country_Region=='Korea, South'") df_korea = df_korea.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_korea = add_daily_measures(df_korea) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') df_usa_tested = data_daily_tested.query("Code=='USA'") df_italy_tested = data_daily_tested.query("Entity=='Italy'") df_spain_tested = data_daily_tested.query("Entity=='Spain'") df_korea_tested = data_daily_tested.query("Entity=='South Korea'") df_usa_merge = pd.merge(df_usa, df_usa_tested) df_usa_merge = pd.merge(df_usa_merge, data_flight) df_usa_data = df_usa_merge.drop(['Date', 'Entity', 'Code', 'US <-> Latin America', 'US <-> China', 'Canada <-> Canada', 'Canada <-> NON Canada', 'Europe <-> Europe', 'Europe <-> UK', 'Europe <-> Latin America', 'UK <-> UK', 'UK <-> NON UK', 'Italy <-> Italy', 'China <-> China', 'Brazil <-> Brazil', 'Brazil <-> NON Brazil', 'India <-> India', 'India <-> NON India', 'Iran <-> Iran'], axis=1) df_usa_data.head()
code
32067553/cell_20
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') df_usa_tested = data_daily_tested.query("Code=='USA'") df_italy_tested = data_daily_tested.query("Entity=='Italy'") df_spain_tested = data_daily_tested.query("Entity=='Spain'") df_korea_tested = data_daily_tested.query("Entity=='South Korea'") df_usa_tested.plot(title='USA', x='Date', figsize=(12, 6)) df_italy_tested.plot(title='Italy', x='Date', figsize=(12, 6)) df_korea_tested.plot(title='Korea', x='Date', figsize=(12, 6))
code
32067553/cell_26
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) def add_daily_measures(df): df.loc[0, 'Daily Cases'] = df.loc[0, 'ConfirmedCases'] df.loc[0, 'Daily Deaths'] = df.loc[0, 'Fatalities'] for i in range(1, len(df)): df.loc[i, 'Daily Cases'] = df.loc[i, 'ConfirmedCases'] - df.loc[i - 1, 'ConfirmedCases'] df.loc[i, 'Daily Deaths'] = df.loc[i, 'Fatalities'] - df.loc[i - 1, 'Fatalities'] df.loc[0, 'Daily Cases'] = 0 df.loc[0, 'Daily Deaths'] = 0 return df df_world = data_train.copy() df_world = df_world.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_world = add_daily_measures(df_world) df_usa = data_train.query("Country_Region=='US'") df_usa = df_usa.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_usa = add_daily_measures(df_usa) df_italy = data_train.query("Country_Region=='Italy'") df_italy = df_italy.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_italy = add_daily_measures(df_italy) df_spain = data_train.query("Country_Region=='Spain'") df_spain = df_spain.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_spain = add_daily_measures(df_spain) df_korea = data_train.query("Country_Region=='Korea, South'") df_korea = df_korea.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_korea = add_daily_measures(df_korea) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') df_usa_tested = data_daily_tested.query("Code=='USA'") df_italy_tested = data_daily_tested.query("Entity=='Italy'") df_spain_tested = data_daily_tested.query("Entity=='Spain'") df_korea_tested = data_daily_tested.query("Entity=='South Korea'") df_usa_merge = pd.merge(df_usa, df_usa_tested) df_usa_merge = pd.merge(df_usa_merge, data_flight) df_usa_data = df_usa_merge.drop(['Date', 'Entity', 'Code', 'US <-> Latin America', 'US <-> China', 'Canada <-> Canada', 'Canada <-> NON Canada', 'Europe <-> Europe', 'Europe <-> UK', 'Europe <-> Latin America', 'UK <-> UK', 'UK <-> NON UK', 'Italy <-> Italy', 'China <-> China', 'Brazil <-> Brazil', 'Brazil <-> NON Brazil', 'India <-> India', 'India <-> NON India', 'Iran <-> Iran'], axis=1) quant_features = ['Daily Cases', 'Daily change in cumulative total tests', 'US <-> US', 'US <-> NON US', 'US <-> Europe', 'ConfirmedCases'] scaled_features = {} for each in quant_features: mean, std = (df_usa_data[each].mean(), df_usa_data[each].std()) scaled_features[each] = [mean, std] df_usa_data.loc[:, each] = (df_usa_data[each] - mean) / std df_usa_data.head()
code
32067553/cell_11
[ "text_html_output_2.png", "text_html_output_1.png", "text_plain_output_2.png", "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) def add_daily_measures(df): df.loc[0, 'Daily Cases'] = df.loc[0, 'ConfirmedCases'] df.loc[0, 'Daily Deaths'] = df.loc[0, 'Fatalities'] for i in range(1, len(df)): df.loc[i, 'Daily Cases'] = df.loc[i, 'ConfirmedCases'] - df.loc[i - 1, 'ConfirmedCases'] df.loc[i, 'Daily Deaths'] = df.loc[i, 'Fatalities'] - df.loc[i - 1, 'Fatalities'] df.loc[0, 'Daily Cases'] = 0 df.loc[0, 'Daily Deaths'] = 0 return df df_world = data_train.copy() df_world = df_world.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_world = add_daily_measures(df_world) df_world.plot(title='Covid19 World daily status', y=['Daily Cases', 'Daily Deaths'], x='Date', figsize=(12, 6))
code
32067553/cell_19
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') data_daily_tested.plot(x='Date', figsize=(12, 6))
code
32067553/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32067553/cell_7
[ "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import matplotlib.pyplot as plt import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) confirmed_total_date_Italy = data_train[data_train['Country_Region'] == 'Italy'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Italy = data_train[data_train['Country_Region'] == 'Italy'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Italy = confirmed_total_date_Italy.join(fatalities_total_date_Italy) plt.figure(figsize=(17, 10)) plt.subplot(2, 2, 1) total_date_Italy.plot(ax=plt.gca(), title='Italy') plt.ylabel('Confirmed infection cases', size=13) confirmed_total_date_US = data_train[data_train['Country_Region'] == 'US'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_US = data_train[data_train['Country_Region'] == 'US'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_US = confirmed_total_date_US.join(fatalities_total_date_US) plt.subplot(2, 2, 2) total_date_US.plot(ax=plt.gca(), title='US') plt.ylabel('Confirmed infection cases', size=13) confirmed_total_date_Spain = data_train[data_train['Country_Region'] == 'Spain'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Spain = data_train[data_train['Country_Region'] == 'Spain'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Spain = confirmed_total_date_Spain.join(fatalities_total_date_Spain) plt.subplot(2, 2, 3) total_date_Spain.plot(ax=plt.gca(), title='Spain') plt.ylabel('Confirmed infection cases', size=13) confirmed_total_date_Korea = data_train[data_train['Country_Region'] == 'Korea, South'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Korea = data_train[data_train['Country_Region'] == 'Korea, South'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Korea = confirmed_total_date_Korea.join(fatalities_total_date_Korea) plt.subplot(2, 2, 4) total_date_Korea.plot(ax=plt.gca(), title='Korea, South') plt.ylabel('Confirmed infection cases', size=13) plt.figure(figsize=(17, 10)) plt.subplot(2, 2, 1) plt.plot(confirmed_total_date_Italy) plt.plot(confirmed_total_date_US) plt.plot(confirmed_total_date_Spain) plt.plot(confirmed_total_date_Korea) plt.legend(['Italy', 'US', 'Spain', 'Korea, South'], loc='upper left') plt.title('COVID-19 infections from the first confirmed case', size=15) plt.xlabel('Days', size=13) plt.ylabel('Infected cases', size=13) plt.ylim(0, 180000) plt.subplot(2, 2, 2) plt.plot(fatalities_total_date_Italy) plt.plot(fatalities_total_date_US) plt.plot(fatalities_total_date_Spain) plt.plot(fatalities_total_date_Korea) plt.legend(['Italy', 'US', 'Spain', 'Korea, South'], loc='upper left') plt.title('COVID-19 Fatalities', size=15) plt.xlabel('Days', size=13) plt.ylabel('Infected cases', size=13) plt.ylim(0, 23000) plt.show()
code
32067553/cell_18
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') data_daily_tested.head()
code
32067553/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_flight.head()
code
32067553/cell_16
[ "image_output_4.png", "text_plain_output_1.png", "image_output_3.png", "image_output_2.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_flight.plot(x='Date', figsize=(12, 6))
code
32067553/cell_38
[ "application_vnd.jupyter.stderr_output_2.png", "text_plain_output_3.png", "text_plain_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sys data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) confirmed_total_date_Italy = data_train[data_train['Country_Region'] == 'Italy'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Italy = data_train[data_train['Country_Region'] == 'Italy'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Italy = confirmed_total_date_Italy.join(fatalities_total_date_Italy) confirmed_total_date_US = data_train[data_train['Country_Region'] == 'US'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_US = data_train[data_train['Country_Region'] == 'US'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_US = confirmed_total_date_US.join(fatalities_total_date_US) confirmed_total_date_Spain = data_train[data_train['Country_Region'] == 'Spain'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Spain = data_train[data_train['Country_Region'] == 'Spain'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Spain = confirmed_total_date_Spain.join(fatalities_total_date_Spain) confirmed_total_date_Korea = data_train[data_train['Country_Region'] == 'Korea, South'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Korea = data_train[data_train['Country_Region'] == 'Korea, South'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Korea = confirmed_total_date_Korea.join(fatalities_total_date_Korea) plt.ylim(0, 180000) plt.ylim(0, 23000) def add_daily_measures(df): df.loc[0, 'Daily Cases'] = df.loc[0, 'ConfirmedCases'] df.loc[0, 'Daily Deaths'] = df.loc[0, 'Fatalities'] for i in range(1, len(df)): df.loc[i, 'Daily Cases'] = df.loc[i, 'ConfirmedCases'] - df.loc[i - 1, 'ConfirmedCases'] df.loc[i, 'Daily Deaths'] = df.loc[i, 'Fatalities'] - df.loc[i - 1, 'Fatalities'] df.loc[0, 'Daily Cases'] = 0 df.loc[0, 'Daily Deaths'] = 0 return df df_world = data_train.copy() df_world = df_world.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_world = add_daily_measures(df_world) df_usa = data_train.query("Country_Region=='US'") df_usa = df_usa.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_usa = add_daily_measures(df_usa) df_italy = data_train.query("Country_Region=='Italy'") df_italy = df_italy.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_italy = add_daily_measures(df_italy) df_spain = data_train.query("Country_Region=='Spain'") df_spain = df_spain.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_spain = add_daily_measures(df_spain) df_korea = data_train.query("Country_Region=='Korea, South'") df_korea = df_korea.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_korea = add_daily_measures(df_korea) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') df_usa_tested = data_daily_tested.query("Code=='USA'") df_italy_tested = data_daily_tested.query("Entity=='Italy'") df_spain_tested = data_daily_tested.query("Entity=='Spain'") df_korea_tested = data_daily_tested.query("Entity=='South Korea'") df_usa_merge = pd.merge(df_usa, df_usa_tested) df_usa_merge = pd.merge(df_usa_merge, data_flight) df_usa_data = df_usa_merge.drop(['Date', 'Entity', 'Code', 'US <-> Latin America', 'US <-> China', 'Canada <-> Canada', 'Canada <-> NON Canada', 'Europe <-> Europe', 'Europe <-> UK', 'Europe <-> Latin America', 'UK <-> UK', 'UK <-> NON UK', 'Italy <-> Italy', 'China <-> China', 'Brazil <-> Brazil', 'Brazil <-> NON Brazil', 'India <-> India', 'India <-> NON India', 'Iran <-> Iran'], axis=1) quant_features = ['Daily Cases', 'Daily change in cumulative total tests', 'US <-> US', 'US <-> NON US', 'US <-> Europe', 'ConfirmedCases'] scaled_features = {} for each in quant_features: mean, std = (df_usa_data[each].mean(), df_usa_data[each].std()) scaled_features[each] = [mean, std] df_usa_data.loc[:, each] = (df_usa_data[each] - mean) / std test_data = df_usa_data[-15:] data = df_usa_data[:-15] target_fields = ['Daily Cases', 'Daily change in cumulative total tests', 'ConfirmedCases'] features, targets = (df_usa_data.drop(target_fields, axis=1), df_usa_data[target_fields]) test_features, test_targets = (test_data.drop(target_fields, axis=1), test_data[target_fields]) class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes ** (-0.5), (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes ** (-0.5), (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate self.activation_function = lambda x: 1 / (1 + np.exp(-x)) def train(self, features, targets): n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): final_outputs, hidden_outputs = self.forward_pass_train(X) delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o) self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records) def forward_pass_train(self, X): hidden_inputs = np.dot(X, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) final_outputs = final_inputs return (final_outputs, hidden_outputs) def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o): error = y - final_outputs hidden_error = np.dot(self.weights_hidden_to_output, error) output_error_term = error * 1 hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs) delta_weights_i_h += hidden_error_term * X[:, None] delta_weights_h_o += output_error_term * hidden_outputs[:, None] return (delta_weights_i_h, delta_weights_h_o) def update_weights(self, delta_weights_i_h, delta_weights_h_o, n_records): self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records def run(self, features): hidden_inputs = np.dot(features, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) final_outputs = final_inputs return final_outputs def MSE(y, Y): return np.mean((y - Y) ** 2) iterations = 1000 learning_rate = 0.3 hidden_nodes = 7 output_nodes = 1 import sys N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train': [], 'validation': []} for ii in range(iterations): batch = np.random.choice(train_features.index, size=128) X, y = (train_features.iloc[batch].values, train_targets.iloc[batch]['Daily Cases']) network.train(X, y) train_loss = MSE(network.run(train_features).T, train_targets['Daily Cases'].values) val_loss = MSE(network.run(val_features).T, val_targets['Daily Cases'].values) sys.stdout.write('\rProgress: {:2.1f}'.format(100 * ii / float(iterations)) + '% ... Training loss: ' + str(train_loss)[:5] + ' ... Validation loss: ' + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) _ = plt.ylim() fig, ax = plt.subplots(figsize=(16, 6)) mean, std = scaled_features['Daily Cases'] predictions = network.run(test_features).T * std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['Daily Cases'] * std + mean).values, label='Daily Cases') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(df_usa_merge.iloc[test_data.index]['Date']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))) _ = ax.set_xticklabels(dates, rotation=45)
code
32067553/cell_24
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) def add_daily_measures(df): df.loc[0, 'Daily Cases'] = df.loc[0, 'ConfirmedCases'] df.loc[0, 'Daily Deaths'] = df.loc[0, 'Fatalities'] for i in range(1, len(df)): df.loc[i, 'Daily Cases'] = df.loc[i, 'ConfirmedCases'] - df.loc[i - 1, 'ConfirmedCases'] df.loc[i, 'Daily Deaths'] = df.loc[i, 'Fatalities'] - df.loc[i - 1, 'Fatalities'] df.loc[0, 'Daily Cases'] = 0 df.loc[0, 'Daily Deaths'] = 0 return df df_world = data_train.copy() df_world = df_world.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_world = add_daily_measures(df_world) df_usa = data_train.query("Country_Region=='US'") df_usa = df_usa.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_usa = add_daily_measures(df_usa) df_italy = data_train.query("Country_Region=='Italy'") df_italy = df_italy.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_italy = add_daily_measures(df_italy) df_spain = data_train.query("Country_Region=='Spain'") df_spain = df_spain.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_spain = add_daily_measures(df_spain) df_korea = data_train.query("Country_Region=='Korea, South'") df_korea = df_korea.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_korea = add_daily_measures(df_korea) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') df_usa_tested = data_daily_tested.query("Code=='USA'") df_italy_tested = data_daily_tested.query("Entity=='Italy'") df_spain_tested = data_daily_tested.query("Entity=='Spain'") df_korea_tested = data_daily_tested.query("Entity=='South Korea'") df_usa_merge = pd.merge(df_usa, df_usa_tested) df_usa_merge = pd.merge(df_usa_merge, data_flight) df_usa_data = df_usa_merge.drop(['Date', 'Entity', 'Code', 'US <-> Latin America', 'US <-> China', 'Canada <-> Canada', 'Canada <-> NON Canada', 'Europe <-> Europe', 'Europe <-> UK', 'Europe <-> Latin America', 'UK <-> UK', 'UK <-> NON UK', 'Italy <-> Italy', 'China <-> China', 'Brazil <-> Brazil', 'Brazil <-> NON Brazil', 'India <-> India', 'India <-> NON India', 'Iran <-> Iran'], axis=1) df_usa_data.plot(figsize=(12, 6))
code
32067553/cell_22
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) def add_daily_measures(df): df.loc[0, 'Daily Cases'] = df.loc[0, 'ConfirmedCases'] df.loc[0, 'Daily Deaths'] = df.loc[0, 'Fatalities'] for i in range(1, len(df)): df.loc[i, 'Daily Cases'] = df.loc[i, 'ConfirmedCases'] - df.loc[i - 1, 'ConfirmedCases'] df.loc[i, 'Daily Deaths'] = df.loc[i, 'Fatalities'] - df.loc[i - 1, 'Fatalities'] df.loc[0, 'Daily Cases'] = 0 df.loc[0, 'Daily Deaths'] = 0 return df df_world = data_train.copy() df_world = df_world.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_world = add_daily_measures(df_world) df_usa = data_train.query("Country_Region=='US'") df_usa = df_usa.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_usa = add_daily_measures(df_usa) df_italy = data_train.query("Country_Region=='Italy'") df_italy = df_italy.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_italy = add_daily_measures(df_italy) df_spain = data_train.query("Country_Region=='Spain'") df_spain = df_spain.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_spain = add_daily_measures(df_spain) df_korea = data_train.query("Country_Region=='Korea, South'") df_korea = df_korea.groupby('Date', as_index=False)['ConfirmedCases', 'Fatalities'].sum() df_korea = add_daily_measures(df_korea) data_flight = pd.read_csv('/kaggle/input/covid19/covid19_flight_countries_mod.csv') data_daily_tested = pd.read_csv('/kaggle/input/covid19/full-list-covid-19-tests-per-day.csv') df_usa_tested = data_daily_tested.query("Code=='USA'") df_italy_tested = data_daily_tested.query("Entity=='Italy'") df_spain_tested = data_daily_tested.query("Entity=='Spain'") df_korea_tested = data_daily_tested.query("Entity=='South Korea'") df_usa_merge = pd.merge(df_usa, df_usa_tested) df_usa_merge = pd.merge(df_usa_merge, data_flight) df_usa_merge.head()
code
32067553/cell_37
[ "text_html_output_1.png" ]
import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import sys data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) confirmed_total_date_Italy = data_train[data_train['Country_Region'] == 'Italy'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Italy = data_train[data_train['Country_Region'] == 'Italy'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Italy = confirmed_total_date_Italy.join(fatalities_total_date_Italy) confirmed_total_date_US = data_train[data_train['Country_Region'] == 'US'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_US = data_train[data_train['Country_Region'] == 'US'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_US = confirmed_total_date_US.join(fatalities_total_date_US) confirmed_total_date_Spain = data_train[data_train['Country_Region'] == 'Spain'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Spain = data_train[data_train['Country_Region'] == 'Spain'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Spain = confirmed_total_date_Spain.join(fatalities_total_date_Spain) confirmed_total_date_Korea = data_train[data_train['Country_Region'] == 'Korea, South'].groupby(['Date']).agg({'ConfirmedCases': ['sum']}) fatalities_total_date_Korea = data_train[data_train['Country_Region'] == 'Korea, South'].groupby(['Date']).agg({'Fatalities': ['sum']}) total_date_Korea = confirmed_total_date_Korea.join(fatalities_total_date_Korea) plt.ylim(0, 180000) plt.ylim(0, 23000) class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes ** (-0.5), (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes ** (-0.5), (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate self.activation_function = lambda x: 1 / (1 + np.exp(-x)) def train(self, features, targets): n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): final_outputs, hidden_outputs = self.forward_pass_train(X) delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o) self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records) def forward_pass_train(self, X): hidden_inputs = np.dot(X, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) final_outputs = final_inputs return (final_outputs, hidden_outputs) def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o): error = y - final_outputs hidden_error = np.dot(self.weights_hidden_to_output, error) output_error_term = error * 1 hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs) delta_weights_i_h += hidden_error_term * X[:, None] delta_weights_h_o += output_error_term * hidden_outputs[:, None] return (delta_weights_i_h, delta_weights_h_o) def update_weights(self, delta_weights_i_h, delta_weights_h_o, n_records): self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records def run(self, features): hidden_inputs = np.dot(features, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) final_outputs = final_inputs return final_outputs def MSE(y, Y): return np.mean((y - Y) ** 2) iterations = 1000 learning_rate = 0.3 hidden_nodes = 7 output_nodes = 1 import sys N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train': [], 'validation': []} for ii in range(iterations): batch = np.random.choice(train_features.index, size=128) X, y = (train_features.iloc[batch].values, train_targets.iloc[batch]['Daily Cases']) network.train(X, y) train_loss = MSE(network.run(train_features).T, train_targets['Daily Cases'].values) val_loss = MSE(network.run(val_features).T, val_targets['Daily Cases'].values) sys.stdout.write('\rProgress: {:2.1f}'.format(100 * ii / float(iterations)) + '% ... Training loss: ' + str(train_loss)[:5] + ' ... Validation loss: ' + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim()
code
32067553/cell_5
[ "image_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data_path = '/kaggle/input/covid19-global-forecasting-week-4/train.csv' data_train = pd.read_csv(data_path) display(data_train.head()) display(data_train.describe()) display(data_train.info())
code
32067553/cell_36
[ "text_plain_output_1.png", "image_output_1.png" ]
import numpy as np import numpy as np # linear algebra import sys class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes ** (-0.5), (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes ** (-0.5), (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate self.activation_function = lambda x: 1 / (1 + np.exp(-x)) def train(self, features, targets): n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): final_outputs, hidden_outputs = self.forward_pass_train(X) delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o) self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records) def forward_pass_train(self, X): hidden_inputs = np.dot(X, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) final_outputs = final_inputs return (final_outputs, hidden_outputs) def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o): error = y - final_outputs hidden_error = np.dot(self.weights_hidden_to_output, error) output_error_term = error * 1 hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs) delta_weights_i_h += hidden_error_term * X[:, None] delta_weights_h_o += output_error_term * hidden_outputs[:, None] return (delta_weights_i_h, delta_weights_h_o) def update_weights(self, delta_weights_i_h, delta_weights_h_o, n_records): self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records self.weights_input_to_hidden += self.lr * delta_weights_i_h / n_records def run(self, features): hidden_inputs = np.dot(features, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) final_outputs = final_inputs return final_outputs def MSE(y, Y): return np.mean((y - Y) ** 2) iterations = 1000 learning_rate = 0.3 hidden_nodes = 7 output_nodes = 1 import sys N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train': [], 'validation': []} for ii in range(iterations): batch = np.random.choice(train_features.index, size=128) X, y = (train_features.iloc[batch].values, train_targets.iloc[batch]['Daily Cases']) network.train(X, y) train_loss = MSE(network.run(train_features).T, train_targets['Daily Cases'].values) val_loss = MSE(network.run(val_features).T, val_targets['Daily Cases'].values) sys.stdout.write('\rProgress: {:2.1f}'.format(100 * ii / float(iterations)) + '% ... Training loss: ' + str(train_loss)[:5] + ' ... Validation loss: ' + str(val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss)
code
32068790/cell_13
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() def func(x): try: x_new = x['Country_Region'] + '/' + x['Province_State'] except: x_new = x['Country_Region'] return x_new df_traintest['place_id'] = df_traintest.apply(lambda x: func(x), axis=1) df_latlong = pd.read_csv('../input/smokingstats/df_Latlong.csv') def func(x): try: x_new = x['Country/Region'] + '/' + x['Province/State'] except: x_new = x['Country/Region'] return x_new df_latlong['place_id'] = df_latlong.apply(lambda x: func(x), axis=1) df_latlong = df_latlong[df_latlong['place_id'].duplicated() == False] df_traintest = pd.merge(df_traintest, df_latlong[['place_id', 'Lat', 'Long']], on='place_id', how='left') df_traintest.head()
code
32068790/cell_9
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) def func(x): try: x_new = x['Country_Region'] + '/' + x['Province_State'] except: x_new = x['Country_Region'] return x_new df_traintest['place_id'] = df_traintest.apply(lambda x: func(x), axis=1) df_traintest.head()
code
32068790/cell_4
[ "text_html_output_1.png" ]
import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_train.tail()
code
32068790/cell_6
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) print(df_train.shape, df_test.shape, df_traintest.shape)
code