|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Script for reading the dataset of the 'ARTigo: Social Image Tagging' project.""" |
|
|
|
import glob |
|
import json |
|
import datasets |
|
import requests |
|
|
|
from PIL import Image |
|
from pathlib import Path |
|
|
|
_CITATION = """\ |
|
@dataset{bry_et_al_artigo, |
|
author = {Bry, François and |
|
Kohle, Hubertus and |
|
Krefeld, Thomas and |
|
Riepl, Christian and |
|
Schneider, Stefanie and |
|
Schön, Gerhard and |
|
Schulz, Klaus}, |
|
title = {{ARTigo}: Social Image Tagging (Aggregated Data)}, |
|
publisher = {Zenodo}, |
|
doi = {10.5281/zenodo.8202331}, |
|
url = {https://doi.org/10.5281/zenodo.8202331}} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ARTigo (https://www.artigo.org/) is a Citizen Science project that has been jointly developed at the Institute for Art History and the Institute for Informatics at Ludwig Maximilian University of Munich since 2010. It enables participants to engage in the tagging of artworks, thus fostering knowledge accumulation and democratizing access to a traditionally elitist field. ARTigo is built as an interactive web application that offers Games With a Purpose: in them, players are presented with an image – and then challenged to communicate with one another using visual or textual annotations within a given time. Through this playful approach, the project aims to inspire greater appreciation for art and draw new audiences to museums and archives. It streamlines the discoverability of art-historical images, while promoting inclusivity, effective communication, and collaborative research practices. The project’s data are freely available to the wider research community for novel scientific investigations. |
|
""" |
|
|
|
_HOMEPAGE = "https://doi.org/10.5281/zenodo.8202331" |
|
|
|
_LICENSE = "Creative Commons Attribution Share Alike 4.0 International (CC BY-SA 4.0)" |
|
|
|
_URLS = "https://zenodo.org/api/records/8202331" |
|
|
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
def create_annotations_dict(annotations_file): |
|
annotations = {} |
|
|
|
with open(annotations_file, encoding="utf-8") as annotations_obj: |
|
for annotation_row in annotations_obj: |
|
annotation_data = json.loads(annotation_row, strict=False) |
|
for tag in annotation_data["tags"]: |
|
if not tag.get("regions"): |
|
tag["regions"] = None |
|
annotations[annotation_data["hash_id"]] = annotation_data |
|
|
|
return annotations |
|
|
|
|
|
class ARTigo(datasets.GeneratorBasedBuilder): |
|
"""Dataset of the 'ARTigo: Social Image Tagging' project""" |
|
|
|
ZENODO_RECORD = requests.get(_URLS).json() |
|
VERSION = datasets.Version(f"{ZENODO_RECORD['metadata']['version']}.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"hash_id": datasets.Value("string"), |
|
"titles": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"name": datasets.Value("string"), |
|
} |
|
), |
|
"creators": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"name": datasets.Value("string"), |
|
} |
|
), |
|
"location": datasets.Value("string"), |
|
"institution": datasets.Value("string"), |
|
"source": { |
|
"id": datasets.Value("int64"), |
|
"name": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
}, |
|
"path": datasets.Value("string"), |
|
"tags": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("int64"), |
|
"name": datasets.Value("string"), |
|
"language": datasets.Value("string"), |
|
"count": datasets.Value("int64"), |
|
"regions": datasets.Sequence( |
|
{ |
|
"x": datasets.Value("float64"), |
|
"y": datasets.Value("float64"), |
|
"width": datasets.Value("float64"), |
|
"height": datasets.Value("float64"), |
|
} |
|
), |
|
} |
|
), |
|
"image": datasets.Image(), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
image_urls = [ |
|
file["links"]["self"] |
|
for file in self.ZENODO_RECORD['files'] |
|
if file["type"] == "zip" |
|
] |
|
annotation_urls = [ |
|
file["links"]["self"] |
|
for file in self.ZENODO_RECORD['files'] |
|
if file["type"] == "jsonl" |
|
] |
|
|
|
image_directories = dl_manager.download_and_extract(image_urls) |
|
annotations_file = dl_manager.download(annotation_urls)[0] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"image_directories": image_directories, |
|
"annotations_file": annotations_file, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, image_directories, annotations_file): |
|
annotations = create_annotations_dict(annotations_file) |
|
|
|
for image_directory in image_directories: |
|
for image_file in glob.glob(f"{image_directory}/**/*.jpg", recursive=True): |
|
with Image.open(image_file) as image: |
|
try: |
|
hash_id, _ = Path(image_file).name.split('.', 1) |
|
image_data = annotations[hash_id] |
|
image_data["image"] = image |
|
|
|
yield image_data["id"], image_data |
|
except Exception: |
|
logger.warn(Path(image_file).name) |
|
|
|
continue |
|
|