Datasets:

ArXiv:
License:
davanstrien HF staff commited on
Commit
128703c
1 Parent(s): b8360c6

add fields

Browse files
Files changed (1) hide show
  1. README.md +267 -253
README.md CHANGED
@@ -1,258 +1,259 @@
1
  ---
2
  dataset_info:
3
- - config_name: raw
4
- features:
5
- - name: image
6
- dtype: image
7
- - name: source
8
- dtype: string
9
- - name: width
10
- dtype: int16
11
- - name: height
12
- dtype: int16
13
- - name: dept
14
- dtype: int8
15
- - name: segmented
16
- dtype: int8
17
- - name: objects
18
- list:
19
- - name: name
20
- dtype:
21
- class_label:
22
- names:
23
- '0': zebra
24
- '1': tree
25
- '2': nude
26
- '3': crucifixion
27
- '4': scroll
28
- '5': head
29
- '6': swan
30
- '7': shield
31
- '8': lily
32
- '9': mouse
33
- '10': knight
34
- '11': dragon
35
- '12': horn
36
- '13': dog
37
- '14': palm
38
- '15': tiara
39
- '16': helmet
40
- '17': sheep
41
- '18': deer
42
- '19': person
43
- '20': sword
44
- '21': rooster
45
- '22': bear
46
- '23': halo
47
- '24': lion
48
- '25': monkey
49
- '26': prayer
50
- '27': crown of thorns
51
- '28': elephant
52
- '29': zucchetto
53
- '30': unicorn
54
- '31': holy shroud
55
- '32': cat
56
- '33': apple
57
- '34': banana
58
- '35': chalice
59
- '36': bird
60
- '37': eagle
61
- '38': pegasus
62
- '39': crown
63
- '40': camauro
64
- '41': saturno
65
- '42': arrow
66
- '43': dove
67
- '44': centaur
68
- '45': horse
69
- '46': hands
70
- '47': skull
71
- '48': orange
72
- '49': monk
73
- '50': trumpet
74
- '51': key of heaven
75
- '52': fish
76
- '53': cow
77
- '54': angel
78
- '55': devil
79
- '56': book
80
- '57': stole
81
- '58': butterfly
82
- '59': serpent
83
- '60': judith
84
- '61': mitre
85
- '62': banner
86
- '63': donkey
87
- '64': shepherd
88
- '65': boat
89
- '66': god the father
90
- '67': crozier
91
- '68': jug
92
- '69': lance
93
- - name: pose
94
- dtype:
95
- class_label:
96
- names:
97
- '0': stand
98
- '1': sit
99
- '2': partial
100
- '3': Unspecified
101
- '4': squats
102
- '5': lie
103
- '6': bend
104
- '7': fall
105
- '8': walk
106
- '9': push
107
- '10': pray
108
- '11': undefined
109
- '12': kneel
110
- '13': unrecognize
111
- '14': unknown
112
- '15': other
113
- '16': ride
114
- - name: diffult
115
- dtype: int32
116
- - name: xmin
117
- dtype: float64
118
- - name: ymin
119
- dtype: float64
120
- - name: xmax
121
- dtype: float64
122
- - name: ymax
123
- dtype: float64
124
- splits:
125
- - name: train
126
- num_bytes: 9046918
127
- num_examples: 15156
128
- download_size: 18160510195
129
- dataset_size: 9046918
130
- - config_name: coco
131
- features:
132
- - name: image
133
- dtype: image
134
- - name: source
135
- dtype: string
136
- - name: width
137
- dtype: int16
138
- - name: height
139
- dtype: int16
140
- - name: dept
141
- dtype: int8
142
- - name: segmented
143
- dtype: int8
144
- - name: objects
145
- list:
146
- - name: category_id
147
- dtype:
148
- class_label:
149
- names:
150
- '0': zebra
151
- '1': tree
152
- '2': nude
153
- '3': crucifixion
154
- '4': scroll
155
- '5': head
156
- '6': swan
157
- '7': shield
158
- '8': lily
159
- '9': mouse
160
- '10': knight
161
- '11': dragon
162
- '12': horn
163
- '13': dog
164
- '14': palm
165
- '15': tiara
166
- '16': helmet
167
- '17': sheep
168
- '18': deer
169
- '19': person
170
- '20': sword
171
- '21': rooster
172
- '22': bear
173
- '23': halo
174
- '24': lion
175
- '25': monkey
176
- '26': prayer
177
- '27': crown of thorns
178
- '28': elephant
179
- '29': zucchetto
180
- '30': unicorn
181
- '31': holy shroud
182
- '32': cat
183
- '33': apple
184
- '34': banana
185
- '35': chalice
186
- '36': bird
187
- '37': eagle
188
- '38': pegasus
189
- '39': crown
190
- '40': camauro
191
- '41': saturno
192
- '42': arrow
193
- '43': dove
194
- '44': centaur
195
- '45': horse
196
- '46': hands
197
- '47': skull
198
- '48': orange
199
- '49': monk
200
- '50': trumpet
201
- '51': key of heaven
202
- '52': fish
203
- '53': cow
204
- '54': angel
205
- '55': devil
206
- '56': book
207
- '57': stole
208
- '58': butterfly
209
- '59': serpent
210
- '60': judith
211
- '61': mitre
212
- '62': banner
213
- '63': donkey
214
- '64': shepherd
215
- '65': boat
216
- '66': god the father
217
- '67': crozier
218
- '68': jug
219
- '69': lance
220
- - name: image_id
221
- dtype: string
222
- - name: area
223
- dtype: int64
224
- - name: bbox
225
- sequence: float32
226
- length: 4
227
- - name: segmentation
228
- list:
229
- list: float32
230
- - name: iscrowd
231
- dtype: bool
232
- - name: image_id
233
- dtype: string
234
- splits:
235
- - name: train
236
- num_bytes: 8285204
237
- num_examples: 15156
238
- download_size: 18160510195
239
- dataset_size: 8285204
240
  license: cc-by-nc-2.0
241
  task_categories:
242
- - object-detection
243
- - image-classification
244
  tags:
245
- - lam
246
- - art
247
- - historical
248
- pretty_name: 'DEArt: Dataset of European Art'
249
  size_categories:
250
- - 10K<n<100K
251
  ---
252
 
253
  # Dataset Card for DEArt: Dataset of European Art
254
 
255
  ## Table of Contents
 
256
  - [Table of Contents](#table-of-contents)
257
  - [Dataset Description](#dataset-description)
258
  - [Dataset Summary](#dataset-summary)
@@ -294,17 +295,17 @@ size_categories:
294
  - `object-detection`: This dataset can be used to train or evaluate models for object-detection on historical document images.
295
  - `image-classification`: This dataset can be used for image classification tasks by using only the labels and not the bounding box information
296
 
297
-
298
  ## Dataset Structure
299
 
300
- This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to integrate the data with existing processing pipelines.
301
 
302
- - The first configuration, `raw, uses the data's original format.
303
- - The second configuration converts the annotations into a format that is closer to the `COCO` annotation format. This is done to make it easier to work with the [`image_processors`](https://huggingface.co/docs/transformers/main_classes/image_processor) (formerly known as`feature_extractor`s) from the `Transformers` models for object detection, which expects data to be in a COCO-style format.
304
 
305
  ### Data Instances
306
 
307
  An instance from the `raw` config:
 
308
  ```python
309
  {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1019x1680>,
310
  'source': 'Europeana Collection',
@@ -406,7 +407,21 @@ An instance from the `coco` config:
406
 
407
  ### Data Fields
408
 
409
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
410
 
411
  ### Data Splits
412
 
@@ -414,12 +429,11 @@ The dataset doesn't define set splits, so only a train split is provided. The pa
414
 
415
  ## Dataset Creation
416
 
417
-
418
  ### Curation Rationale
419
- The creators of the dataset authors outline some of their motivations for creating the dataset in the abstract for their paper:
420
 
421
- >Large datasets that were made publicly available to the research community over the last 20 years have been a key enabling factor for the advances in deep learning algorithms for NLP or computer vision. These datasets are generally pairs of aligned image / manually annotated metadata, where images are photographs of everyday life. Scholarly and historical content, on the other hand, treat subjects that are not necessarily popular to a general audience, they may not always contain a large number of data points, and new data may be difficult or impossible to collect. Some exceptions do exist, for instance, scientific or health data, but this is not the case for cultural heritage (CH). The poor performance of the best models in computer vision - when tested over artworks - coupled with the lack of extensively annotated datasets for CH, and the fact that artwork images depict objects and actions not captured by photographs, indicate that a CH-specific dataset would be highly valuable for this community. We propose DEArt, at this point primarily an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are CH-specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art. Additionally, existing datasets do not include pose annotations.
422
 
 
423
 
424
  ### Source Data
425
 
@@ -506,4 +520,4 @@ The source data comes from several cultural heritage institutions that have shar
506
 
507
  ### Contributions
508
 
509
- Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.
 
1
  ---
2
  dataset_info:
3
+ - config_name: raw
4
+ features:
5
+ - name: image
6
+ dtype: image
7
+ - name: source
8
+ dtype: string
9
+ - name: width
10
+ dtype: int16
11
+ - name: height
12
+ dtype: int16
13
+ - name: dept
14
+ dtype: int8
15
+ - name: segmented
16
+ dtype: int8
17
+ - name: objects
18
+ list:
19
+ - name: name
20
+ dtype:
21
+ class_label:
22
+ names:
23
+ "0": zebra
24
+ "1": tree
25
+ "2": nude
26
+ "3": crucifixion
27
+ "4": scroll
28
+ "5": head
29
+ "6": swan
30
+ "7": shield
31
+ "8": lily
32
+ "9": mouse
33
+ "10": knight
34
+ "11": dragon
35
+ "12": horn
36
+ "13": dog
37
+ "14": palm
38
+ "15": tiara
39
+ "16": helmet
40
+ "17": sheep
41
+ "18": deer
42
+ "19": person
43
+ "20": sword
44
+ "21": rooster
45
+ "22": bear
46
+ "23": halo
47
+ "24": lion
48
+ "25": monkey
49
+ "26": prayer
50
+ "27": crown of thorns
51
+ "28": elephant
52
+ "29": zucchetto
53
+ "30": unicorn
54
+ "31": holy shroud
55
+ "32": cat
56
+ "33": apple
57
+ "34": banana
58
+ "35": chalice
59
+ "36": bird
60
+ "37": eagle
61
+ "38": pegasus
62
+ "39": crown
63
+ "40": camauro
64
+ "41": saturno
65
+ "42": arrow
66
+ "43": dove
67
+ "44": centaur
68
+ "45": horse
69
+ "46": hands
70
+ "47": skull
71
+ "48": orange
72
+ "49": monk
73
+ "50": trumpet
74
+ "51": key of heaven
75
+ "52": fish
76
+ "53": cow
77
+ "54": angel
78
+ "55": devil
79
+ "56": book
80
+ "57": stole
81
+ "58": butterfly
82
+ "59": serpent
83
+ "60": judith
84
+ "61": mitre
85
+ "62": banner
86
+ "63": donkey
87
+ "64": shepherd
88
+ "65": boat
89
+ "66": god the father
90
+ "67": crozier
91
+ "68": jug
92
+ "69": lance
93
+ - name: pose
94
+ dtype:
95
+ class_label:
96
+ names:
97
+ "0": stand
98
+ "1": sit
99
+ "2": partial
100
+ "3": Unspecified
101
+ "4": squats
102
+ "5": lie
103
+ "6": bend
104
+ "7": fall
105
+ "8": walk
106
+ "9": push
107
+ "10": pray
108
+ "11": undefined
109
+ "12": kneel
110
+ "13": unrecognize
111
+ "14": unknown
112
+ "15": other
113
+ "16": ride
114
+ - name: diffult
115
+ dtype: int32
116
+ - name: xmin
117
+ dtype: float64
118
+ - name: ymin
119
+ dtype: float64
120
+ - name: xmax
121
+ dtype: float64
122
+ - name: ymax
123
+ dtype: float64
124
+ splits:
125
+ - name: train
126
+ num_bytes: 9046918
127
+ num_examples: 15156
128
+ download_size: 18160510195
129
+ dataset_size: 9046918
130
+ - config_name: coco
131
+ features:
132
+ - name: image
133
+ dtype: image
134
+ - name: source
135
+ dtype: string
136
+ - name: width
137
+ dtype: int16
138
+ - name: height
139
+ dtype: int16
140
+ - name: dept
141
+ dtype: int8
142
+ - name: segmented
143
+ dtype: int8
144
+ - name: objects
145
+ list:
146
+ - name: category_id
147
+ dtype:
148
+ class_label:
149
+ names:
150
+ "0": zebra
151
+ "1": tree
152
+ "2": nude
153
+ "3": crucifixion
154
+ "4": scroll
155
+ "5": head
156
+ "6": swan
157
+ "7": shield
158
+ "8": lily
159
+ "9": mouse
160
+ "10": knight
161
+ "11": dragon
162
+ "12": horn
163
+ "13": dog
164
+ "14": palm
165
+ "15": tiara
166
+ "16": helmet
167
+ "17": sheep
168
+ "18": deer
169
+ "19": person
170
+ "20": sword
171
+ "21": rooster
172
+ "22": bear
173
+ "23": halo
174
+ "24": lion
175
+ "25": monkey
176
+ "26": prayer
177
+ "27": crown of thorns
178
+ "28": elephant
179
+ "29": zucchetto
180
+ "30": unicorn
181
+ "31": holy shroud
182
+ "32": cat
183
+ "33": apple
184
+ "34": banana
185
+ "35": chalice
186
+ "36": bird
187
+ "37": eagle
188
+ "38": pegasus
189
+ "39": crown
190
+ "40": camauro
191
+ "41": saturno
192
+ "42": arrow
193
+ "43": dove
194
+ "44": centaur
195
+ "45": horse
196
+ "46": hands
197
+ "47": skull
198
+ "48": orange
199
+ "49": monk
200
+ "50": trumpet
201
+ "51": key of heaven
202
+ "52": fish
203
+ "53": cow
204
+ "54": angel
205
+ "55": devil
206
+ "56": book
207
+ "57": stole
208
+ "58": butterfly
209
+ "59": serpent
210
+ "60": judith
211
+ "61": mitre
212
+ "62": banner
213
+ "63": donkey
214
+ "64": shepherd
215
+ "65": boat
216
+ "66": god the father
217
+ "67": crozier
218
+ "68": jug
219
+ "69": lance
220
+ - name: image_id
221
+ dtype: string
222
+ - name: area
223
+ dtype: int64
224
+ - name: bbox
225
+ sequence: float32
226
+ length: 4
227
+ - name: segmentation
228
+ list:
229
+ list: float32
230
+ - name: iscrowd
231
+ dtype: bool
232
+ - name: image_id
233
+ dtype: string
234
+ splits:
235
+ - name: train
236
+ num_bytes: 8285204
237
+ num_examples: 15156
238
+ download_size: 18160510195
239
+ dataset_size: 8285204
240
  license: cc-by-nc-2.0
241
  task_categories:
242
+ - object-detection
243
+ - image-classification
244
  tags:
245
+ - lam
246
+ - art
247
+ - historical
248
+ pretty_name: "DEArt: Dataset of European Art"
249
  size_categories:
250
+ - 10K<n<100K
251
  ---
252
 
253
  # Dataset Card for DEArt: Dataset of European Art
254
 
255
  ## Table of Contents
256
+
257
  - [Table of Contents](#table-of-contents)
258
  - [Dataset Description](#dataset-description)
259
  - [Dataset Summary](#dataset-summary)
 
295
  - `object-detection`: This dataset can be used to train or evaluate models for object-detection on historical document images.
296
  - `image-classification`: This dataset can be used for image classification tasks by using only the labels and not the bounding box information
297
 
 
298
  ## Dataset Structure
299
 
300
+ This dataset has two configurations. These configurations both cover the same data and annotations but provide these annotations in different forms to make it easier to integrate the data with existing processing pipelines.
301
 
302
+ - The first configuration, `raw, uses the data's original format.
303
+ - The second configuration converts the annotations into a format that is closer to the `COCO` annotation format. This is done to make it easier to work with the [`image_processors`](https://huggingface.co/docs/transformers/main_classes/image_processor) (formerly known as`feature_extractor`s) from the `Transformers` models for object detection, which expects data to be in a COCO-style format.
304
 
305
  ### Data Instances
306
 
307
  An instance from the `raw` config:
308
+
309
  ```python
310
  {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=1019x1680>,
311
  'source': 'Europeana Collection',
 
407
 
408
  ### Data Fields
409
 
410
+ The fields for the COCO config:
411
+
412
+ - `image`: The Image being annotated
413
+ - `source`: source of the image i.e.'Europeana Collection'
414
+ - `width`: width of the image
415
+ - `height`: height of the image
416
+ - `dept`: number of channels in the image
417
+ - `segmented`: Whether the image has been segmented
418
+ - `image_id`: ID for the image
419
+ - `annotations`: annotations in coco format, consisting of a list containing dictionaries with the following keys:
420
+ - `bbox`: bounding boxes for the images
421
+ - `category_id`: a label for the image
422
+ - `image_id`: id for the image
423
+ - `iscrowd`: COCO `iscrowd` flag
424
+ - `segmentation`: COCO segmentation annotations (empty in this case but kept for compatibility with other processing scripts)
425
 
426
  ### Data Splits
427
 
 
429
 
430
  ## Dataset Creation
431
 
 
432
  ### Curation Rationale
 
433
 
434
+ The creators of the dataset authors outline some of their motivations for creating the dataset in the abstract for their paper:
435
 
436
+ > Large datasets that were made publicly available to the research community over the last 20 years have been a key enabling factor for the advances in deep learning algorithms for NLP or computer vision. These datasets are generally pairs of aligned image / manually annotated metadata, where images are photographs of everyday life. Scholarly and historical content, on the other hand, treat subjects that are not necessarily popular to a general audience, they may not always contain a large number of data points, and new data may be difficult or impossible to collect. Some exceptions do exist, for instance, scientific or health data, but this is not the case for cultural heritage (CH). The poor performance of the best models in computer vision - when tested over artworks - coupled with the lack of extensively annotated datasets for CH, and the fact that artwork images depict objects and actions not captured by photographs, indicate that a CH-specific dataset would be highly valuable for this community. We propose DEArt, at this point primarily an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are CH-specific and thus do not appear in other datasets; these reflect imaginary beings, symbolic entities and other categories related to art. Additionally, existing datasets do not include pose annotations.
437
 
438
  ### Source Data
439
 
 
520
 
521
  ### Contributions
522
 
523
+ Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.