Datasets:
Commit
•
52fe1d5
1
Parent(s):
86f7abc
draft dataset
Browse files- README.md +240 -0
- european_art.py +341 -0
README.md
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
- config_name: raw
|
4 |
+
features:
|
5 |
+
- name: image
|
6 |
+
dtype: image
|
7 |
+
- name: source
|
8 |
+
dtype: string
|
9 |
+
- name: width
|
10 |
+
dtype: int16
|
11 |
+
- name: height
|
12 |
+
dtype: int16
|
13 |
+
- name: dept
|
14 |
+
dtype: int8
|
15 |
+
- name: segmented
|
16 |
+
dtype: int8
|
17 |
+
- name: objects
|
18 |
+
list:
|
19 |
+
- name: name
|
20 |
+
dtype:
|
21 |
+
class_label:
|
22 |
+
names:
|
23 |
+
'0': zebra
|
24 |
+
'1': tree
|
25 |
+
'2': nude
|
26 |
+
'3': crucifixion
|
27 |
+
'4': scroll
|
28 |
+
'5': head
|
29 |
+
'6': swan
|
30 |
+
'7': shield
|
31 |
+
'8': lily
|
32 |
+
'9': mouse
|
33 |
+
'10': knight
|
34 |
+
'11': dragon
|
35 |
+
'12': horn
|
36 |
+
'13': dog
|
37 |
+
'14': palm
|
38 |
+
'15': tiara
|
39 |
+
'16': helmet
|
40 |
+
'17': sheep
|
41 |
+
'18': deer
|
42 |
+
'19': person
|
43 |
+
'20': sword
|
44 |
+
'21': rooster
|
45 |
+
'22': bear
|
46 |
+
'23': halo
|
47 |
+
'24': lion
|
48 |
+
'25': monkey
|
49 |
+
'26': prayer
|
50 |
+
'27': crown of thorns
|
51 |
+
'28': elephant
|
52 |
+
'29': zucchetto
|
53 |
+
'30': unicorn
|
54 |
+
'31': holy shroud
|
55 |
+
'32': cat
|
56 |
+
'33': apple
|
57 |
+
'34': banana
|
58 |
+
'35': chalice
|
59 |
+
'36': bird
|
60 |
+
'37': eagle
|
61 |
+
'38': pegasus
|
62 |
+
'39': crown
|
63 |
+
'40': camauro
|
64 |
+
'41': saturno
|
65 |
+
'42': arrow
|
66 |
+
'43': dove
|
67 |
+
'44': centaur
|
68 |
+
'45': horse
|
69 |
+
'46': hands
|
70 |
+
'47': skull
|
71 |
+
'48': orange
|
72 |
+
'49': monk
|
73 |
+
'50': trumpet
|
74 |
+
'51': key of heaven
|
75 |
+
'52': fish
|
76 |
+
'53': cow
|
77 |
+
'54': angel
|
78 |
+
'55': devil
|
79 |
+
'56': book
|
80 |
+
'57': stole
|
81 |
+
'58': butterfly
|
82 |
+
'59': serpent
|
83 |
+
'60': judith
|
84 |
+
'61': mitre
|
85 |
+
'62': banner
|
86 |
+
'63': donkey
|
87 |
+
'64': shepherd
|
88 |
+
'65': boat
|
89 |
+
'66': god the father
|
90 |
+
'67': crozier
|
91 |
+
'68': jug
|
92 |
+
'69': lance
|
93 |
+
- name: pose
|
94 |
+
dtype:
|
95 |
+
class_label:
|
96 |
+
names:
|
97 |
+
'0': stand
|
98 |
+
'1': sit
|
99 |
+
'2': partial
|
100 |
+
'3': Unspecified
|
101 |
+
'4': squats
|
102 |
+
'5': lie
|
103 |
+
'6': bend
|
104 |
+
'7': fall
|
105 |
+
'8': walk
|
106 |
+
'9': push
|
107 |
+
'10': pray
|
108 |
+
'11': undefined
|
109 |
+
'12': kneel
|
110 |
+
'13': unrecognize
|
111 |
+
'14': unknown
|
112 |
+
'15': other
|
113 |
+
'16': ride
|
114 |
+
- name: diffult
|
115 |
+
dtype: int32
|
116 |
+
- name: xmin
|
117 |
+
dtype: float64
|
118 |
+
- name: ymin
|
119 |
+
dtype: float64
|
120 |
+
- name: xmax
|
121 |
+
dtype: float64
|
122 |
+
- name: ymax
|
123 |
+
dtype: float64
|
124 |
+
splits:
|
125 |
+
- name: train
|
126 |
+
num_bytes: 9046918
|
127 |
+
num_examples: 15156
|
128 |
+
download_size: 18160510195
|
129 |
+
dataset_size: 9046918
|
130 |
+
- config_name: coco
|
131 |
+
features:
|
132 |
+
- name: image
|
133 |
+
dtype: image
|
134 |
+
- name: source
|
135 |
+
dtype: string
|
136 |
+
- name: width
|
137 |
+
dtype: int16
|
138 |
+
- name: height
|
139 |
+
dtype: int16
|
140 |
+
- name: dept
|
141 |
+
dtype: int8
|
142 |
+
- name: segmented
|
143 |
+
dtype: int8
|
144 |
+
- name: objects
|
145 |
+
list:
|
146 |
+
- name: category_id
|
147 |
+
dtype:
|
148 |
+
class_label:
|
149 |
+
names:
|
150 |
+
'0': zebra
|
151 |
+
'1': tree
|
152 |
+
'2': nude
|
153 |
+
'3': crucifixion
|
154 |
+
'4': scroll
|
155 |
+
'5': head
|
156 |
+
'6': swan
|
157 |
+
'7': shield
|
158 |
+
'8': lily
|
159 |
+
'9': mouse
|
160 |
+
'10': knight
|
161 |
+
'11': dragon
|
162 |
+
'12': horn
|
163 |
+
'13': dog
|
164 |
+
'14': palm
|
165 |
+
'15': tiara
|
166 |
+
'16': helmet
|
167 |
+
'17': sheep
|
168 |
+
'18': deer
|
169 |
+
'19': person
|
170 |
+
'20': sword
|
171 |
+
'21': rooster
|
172 |
+
'22': bear
|
173 |
+
'23': halo
|
174 |
+
'24': lion
|
175 |
+
'25': monkey
|
176 |
+
'26': prayer
|
177 |
+
'27': crown of thorns
|
178 |
+
'28': elephant
|
179 |
+
'29': zucchetto
|
180 |
+
'30': unicorn
|
181 |
+
'31': holy shroud
|
182 |
+
'32': cat
|
183 |
+
'33': apple
|
184 |
+
'34': banana
|
185 |
+
'35': chalice
|
186 |
+
'36': bird
|
187 |
+
'37': eagle
|
188 |
+
'38': pegasus
|
189 |
+
'39': crown
|
190 |
+
'40': camauro
|
191 |
+
'41': saturno
|
192 |
+
'42': arrow
|
193 |
+
'43': dove
|
194 |
+
'44': centaur
|
195 |
+
'45': horse
|
196 |
+
'46': hands
|
197 |
+
'47': skull
|
198 |
+
'48': orange
|
199 |
+
'49': monk
|
200 |
+
'50': trumpet
|
201 |
+
'51': key of heaven
|
202 |
+
'52': fish
|
203 |
+
'53': cow
|
204 |
+
'54': angel
|
205 |
+
'55': devil
|
206 |
+
'56': book
|
207 |
+
'57': stole
|
208 |
+
'58': butterfly
|
209 |
+
'59': serpent
|
210 |
+
'60': judith
|
211 |
+
'61': mitre
|
212 |
+
'62': banner
|
213 |
+
'63': donkey
|
214 |
+
'64': shepherd
|
215 |
+
'65': boat
|
216 |
+
'66': god the father
|
217 |
+
'67': crozier
|
218 |
+
'68': jug
|
219 |
+
'69': lance
|
220 |
+
- name: image_id
|
221 |
+
dtype: string
|
222 |
+
- name: area
|
223 |
+
dtype: int64
|
224 |
+
- name: bbox
|
225 |
+
sequence: float32
|
226 |
+
length: 4
|
227 |
+
- name: segmentation
|
228 |
+
list:
|
229 |
+
list: float32
|
230 |
+
- name: iscrowd
|
231 |
+
dtype: bool
|
232 |
+
- name: image_id
|
233 |
+
dtype: string
|
234 |
+
splits:
|
235 |
+
- name: train
|
236 |
+
num_bytes: 8285204
|
237 |
+
num_examples: 15156
|
238 |
+
download_size: 18160510195
|
239 |
+
dataset_size: 8285204
|
240 |
+
---
|
european_art.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Script for reading 'You Actually Look Twice At it (YALTAi)' dataset."""
|
15 |
+
|
16 |
+
|
17 |
+
import contextlib
|
18 |
+
from typing import Dict
|
19 |
+
import requests
|
20 |
+
import datasets
|
21 |
+
from PIL import Image
|
22 |
+
from pathlib import Path
|
23 |
+
import xml.etree.ElementTree as ET
|
24 |
+
from xml.etree.ElementTree import Element
|
25 |
+
from typing import Any, List
|
26 |
+
from pathlib import PosixPath
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@dataset{clerice_thibault_2022_6827706,
|
30 |
+
author = {Clérice, Thibault},
|
31 |
+
title = {YALTAi: Tabular Dataset},
|
32 |
+
month = jul,
|
33 |
+
year = 2022,
|
34 |
+
publisher = {Zenodo},
|
35 |
+
version = {1.0.0},
|
36 |
+
doi = {10.5281/zenodo.6827706},
|
37 |
+
url = {https://doi.org/10.5281/zenodo.6827706}
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
_DESCRIPTION = """Yalt AI Tabular Dataset"""
|
42 |
+
|
43 |
+
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6984525"
|
44 |
+
|
45 |
+
_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 2.0 Generic"
|
46 |
+
|
47 |
+
ZENODO_API_URL = "https://zenodo.org/api/records/6984525"
|
48 |
+
|
49 |
+
_CATEGORIES = [
|
50 |
+
"zebra",
|
51 |
+
"tree",
|
52 |
+
"nude",
|
53 |
+
"crucifixion",
|
54 |
+
"scroll",
|
55 |
+
"head",
|
56 |
+
"swan",
|
57 |
+
"shield",
|
58 |
+
"lily",
|
59 |
+
"mouse",
|
60 |
+
"knight",
|
61 |
+
"dragon",
|
62 |
+
"horn",
|
63 |
+
"dog",
|
64 |
+
"palm",
|
65 |
+
"tiara",
|
66 |
+
"helmet",
|
67 |
+
"sheep",
|
68 |
+
"deer",
|
69 |
+
"person",
|
70 |
+
"sword",
|
71 |
+
"rooster",
|
72 |
+
"bear",
|
73 |
+
"halo",
|
74 |
+
"lion",
|
75 |
+
"monkey",
|
76 |
+
"prayer",
|
77 |
+
"crown of thorns",
|
78 |
+
"elephant",
|
79 |
+
"zucchetto",
|
80 |
+
"unicorn",
|
81 |
+
"holy shroud",
|
82 |
+
"cat",
|
83 |
+
"apple",
|
84 |
+
"banana",
|
85 |
+
"chalice",
|
86 |
+
"bird",
|
87 |
+
"eagle",
|
88 |
+
"pegasus",
|
89 |
+
"crown",
|
90 |
+
"camauro",
|
91 |
+
"saturno",
|
92 |
+
"arrow",
|
93 |
+
"dove",
|
94 |
+
"centaur",
|
95 |
+
"horse",
|
96 |
+
"hands",
|
97 |
+
"skull",
|
98 |
+
"orange",
|
99 |
+
"monk",
|
100 |
+
"trumpet",
|
101 |
+
"key of heaven",
|
102 |
+
"fish",
|
103 |
+
"cow",
|
104 |
+
"angel",
|
105 |
+
"devil",
|
106 |
+
"book",
|
107 |
+
"stole",
|
108 |
+
"butterfly",
|
109 |
+
"serpent",
|
110 |
+
"judith",
|
111 |
+
"mitre",
|
112 |
+
"banner",
|
113 |
+
"donkey",
|
114 |
+
"shepherd",
|
115 |
+
"boat",
|
116 |
+
"god the father",
|
117 |
+
"crozier",
|
118 |
+
"jug",
|
119 |
+
"lance",
|
120 |
+
]
|
121 |
+
|
122 |
+
_POSES = [
|
123 |
+
"stand",
|
124 |
+
"sit",
|
125 |
+
"partial",
|
126 |
+
"Unspecified",
|
127 |
+
"squats",
|
128 |
+
"lie",
|
129 |
+
"bend",
|
130 |
+
"fall",
|
131 |
+
"walk",
|
132 |
+
"push",
|
133 |
+
"pray",
|
134 |
+
"undefined",
|
135 |
+
"kneel",
|
136 |
+
"unrecognize",
|
137 |
+
"unknown",
|
138 |
+
"other",
|
139 |
+
"ride",
|
140 |
+
]
|
141 |
+
|
142 |
+
|
143 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
144 |
+
|
145 |
+
|
146 |
+
def parse_annotation(annotations_object: Element) -> Dict[str, Any]:
|
147 |
+
with contextlib.suppress(ValueError):
|
148 |
+
name = annotations_object.find("name").text
|
149 |
+
pose = annotations_object.find("pose").text
|
150 |
+
diffult = int(annotations_object.find("difficult").text)
|
151 |
+
bndbox = annotations_object.find("bndbox")
|
152 |
+
xmin = float(bndbox.find("xmin").text)
|
153 |
+
ymin = float(bndbox.find("ymin").text)
|
154 |
+
xmax = float(bndbox.find("xmax").text)
|
155 |
+
ymax = float(bndbox.find("ymax").text)
|
156 |
+
return {
|
157 |
+
"name": name,
|
158 |
+
"pose": pose,
|
159 |
+
"diffult": diffult,
|
160 |
+
"xmin": xmin,
|
161 |
+
"ymin": ymin,
|
162 |
+
"xmax": xmax,
|
163 |
+
"ymax": ymax,
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
def create_annotations_dict(xmls: List[PosixPath]) -> Dict[str, Any]:
|
168 |
+
annotations = {}
|
169 |
+
for xml in xmls:
|
170 |
+
tree = ET.parse(xml)
|
171 |
+
root = tree.getroot()
|
172 |
+
filename = root.find("filename").text
|
173 |
+
source = root.find("source/database").text
|
174 |
+
size = root.find("size")
|
175 |
+
width = int(size.find("width").text)
|
176 |
+
height = int(size.find("height").text)
|
177 |
+
depth = int(size.find("depth").text)
|
178 |
+
segmented = root.find("segmented")
|
179 |
+
segmented = int(segmented.text) if segmented else None
|
180 |
+
annotation_objects = root.findall("object")
|
181 |
+
annotation_objects = [
|
182 |
+
parse_annotation(annotation) for annotation in annotation_objects
|
183 |
+
]
|
184 |
+
annotation_objects = [
|
185 |
+
annotation for annotation in annotation_objects if annotation is not None
|
186 |
+
]
|
187 |
+
annotations[filename] = {
|
188 |
+
"source": source,
|
189 |
+
"width": width,
|
190 |
+
"height": height,
|
191 |
+
"dept": depth,
|
192 |
+
"segmented": segmented,
|
193 |
+
"objects": annotation_objects,
|
194 |
+
}
|
195 |
+
return annotations
|
196 |
+
|
197 |
+
|
198 |
+
def get_coco_annotation_from_obj(
|
199 |
+
image_id, label, xmin, ymin, xmax, ymax
|
200 |
+
): # adapted from https://github.com/yukkyo/voc2coco/blob/abd05bbfa0740a04bb483862eccea2032bc80e24/voc2coco.py#L60
|
201 |
+
category_id = label
|
202 |
+
assert xmax > xmin and ymax > ymin, logger.warn(
|
203 |
+
f"Box size error !: (xmin, ymin, xmax, ymax): {xmin, ymin, xmax, ymax}"
|
204 |
+
)
|
205 |
+
o_width = xmax - xmin
|
206 |
+
o_height = ymax - ymin
|
207 |
+
ann = {
|
208 |
+
"image_id": image_id,
|
209 |
+
"area": o_width * o_height,
|
210 |
+
"iscrowd": 0,
|
211 |
+
"bbox": [xmin, ymin, o_width, o_height],
|
212 |
+
"category_id": category_id,
|
213 |
+
# "ignore": 0,
|
214 |
+
"segmentation": [],
|
215 |
+
}
|
216 |
+
return ann
|
217 |
+
|
218 |
+
|
219 |
+
common_features = features = datasets.Features(
|
220 |
+
{
|
221 |
+
# "image_id": datasets.Value("int64"),
|
222 |
+
"image": datasets.Image(),
|
223 |
+
"source": datasets.Value("string"),
|
224 |
+
"width": datasets.Value("int16"),
|
225 |
+
"height": datasets.Value("int16"),
|
226 |
+
"dept": datasets.Value("int8"),
|
227 |
+
"segmented": datasets.Value("int8"),
|
228 |
+
}
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
class DeartDatasetConfig(datasets.BuilderConfig):
|
233 |
+
"""BuilderConfig for YaltAiTabularDataset."""
|
234 |
+
|
235 |
+
def __init__(self, name, **kwargs):
|
236 |
+
"""BuilderConfig for YaltAiTabularDataset."""
|
237 |
+
super(DeartDatasetConfig, self).__init__(
|
238 |
+
version=datasets.Version("1.0.0"), name=name, description=None, **kwargs
|
239 |
+
)
|
240 |
+
|
241 |
+
|
242 |
+
class DeartDataset(datasets.GeneratorBasedBuilder):
|
243 |
+
"""Object Detection for historic manuscripts"""
|
244 |
+
|
245 |
+
BUILDER_CONFIGS = [
|
246 |
+
DeartDatasetConfig("raw"),
|
247 |
+
DeartDatasetConfig("coco"),
|
248 |
+
]
|
249 |
+
|
250 |
+
def _info(self):
|
251 |
+
if self.config.name == "coco":
|
252 |
+
features = common_features
|
253 |
+
features["image_id"] = datasets.Value("string")
|
254 |
+
object_dict = {
|
255 |
+
"category_id": datasets.ClassLabel(names=_CATEGORIES),
|
256 |
+
"image_id": datasets.Value("string"),
|
257 |
+
"area": datasets.Value("int64"),
|
258 |
+
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
259 |
+
"segmentation": [[datasets.Value("float32")]],
|
260 |
+
"iscrowd": datasets.Value("bool"),
|
261 |
+
}
|
262 |
+
features["objects"] = [object_dict]
|
263 |
+
if self.config.name == "raw":
|
264 |
+
features = common_features
|
265 |
+
|
266 |
+
object_dict = {
|
267 |
+
"name": datasets.ClassLabel(names=_CATEGORIES),
|
268 |
+
"pose": datasets.ClassLabel(names=_POSES),
|
269 |
+
"diffult": datasets.Value("int32"),
|
270 |
+
"xmin": datasets.Value("float64"),
|
271 |
+
"ymin": datasets.Value("float64"),
|
272 |
+
"xmax": datasets.Value("float64"),
|
273 |
+
"ymax": datasets.Value("float64"),
|
274 |
+
}
|
275 |
+
features["objects"] = [object_dict]
|
276 |
+
return datasets.DatasetInfo(
|
277 |
+
features=features,
|
278 |
+
supervised_keys=None,
|
279 |
+
description=_DESCRIPTION,
|
280 |
+
homepage=_HOMEPAGE,
|
281 |
+
license=_LICENSE,
|
282 |
+
citation=_CITATION,
|
283 |
+
)
|
284 |
+
|
285 |
+
def _split_generators(self, dl_manager):
|
286 |
+
zenodo_record = requests.get(ZENODO_API_URL).json()
|
287 |
+
urls = sorted(
|
288 |
+
[
|
289 |
+
file["links"]["self"]
|
290 |
+
for file in zenodo_record["files"]
|
291 |
+
if file["type"] == "zip"
|
292 |
+
]
|
293 |
+
)
|
294 |
+
annotation_data = urls.pop(0)
|
295 |
+
annotation_data = dl_manager.download_and_extract(annotation_data)
|
296 |
+
|
297 |
+
image_data = dl_manager.download_and_extract(urls)
|
298 |
+
return [
|
299 |
+
datasets.SplitGenerator(
|
300 |
+
name=datasets.Split.TRAIN,
|
301 |
+
gen_kwargs={
|
302 |
+
"annotations_data": Path(annotation_data),
|
303 |
+
"image_data": image_data,
|
304 |
+
},
|
305 |
+
),
|
306 |
+
]
|
307 |
+
|
308 |
+
def _generate_examples(self, annotations_data, image_data):
|
309 |
+
xmls = list(annotations_data.rglob("*.xml"))
|
310 |
+
annotations_data = create_annotations_dict(xmls)
|
311 |
+
count = 0
|
312 |
+
for directory in image_data:
|
313 |
+
for file in Path(directory).glob("*.jpg"):
|
314 |
+
with Image.open(file) as image:
|
315 |
+
try:
|
316 |
+
if self.config.name == "raw":
|
317 |
+
example = annotations_data[file.name]
|
318 |
+
example["image"] = image
|
319 |
+
count += 1
|
320 |
+
yield count, example
|
321 |
+
if self.config.name == "coco":
|
322 |
+
updated_annotations = []
|
323 |
+
example = annotations_data[file.name]
|
324 |
+
annotations = example["objects"]
|
325 |
+
for annotation in annotations:
|
326 |
+
label = annotation["name"]
|
327 |
+
xmin, ymin = annotation["xmin"], annotation["ymin"]
|
328 |
+
xmax, ymax = annotation["xmax"], annotation["ymax"]
|
329 |
+
updated_annotations.append(
|
330 |
+
get_coco_annotation_from_obj(
|
331 |
+
count, label, xmin, ymin, xmax, ymax
|
332 |
+
),
|
333 |
+
)
|
334 |
+
example["image"] = image
|
335 |
+
example["objects"] = updated_annotations
|
336 |
+
example["image_id"] = str(count)
|
337 |
+
count += 1
|
338 |
+
yield count, example
|
339 |
+
except Exception:
|
340 |
+
logger.warn(file.name)
|
341 |
+
continue
|