File size: 5,715 Bytes
0a1e07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273951c
 
 
 
 
 
 
0a1e07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf036bf
0a1e07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf036bf
0a1e07a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf036bf
 
 
 
 
 
 
 
 
 
 
0a1e07a
 
 
 
 
 
 
 
cf036bf
 
 
0a1e07a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import datasets
import glob
import xml.etree.ElementTree as ET

_CITATION = """@article{Howard2017,
author = "Sharon Howard",
title = "{Old Bailey Online XML Data}",
year = "2017",
month = "4",
url = "https://figshare.shef.ac.uk/articles/dataset/Old_Bailey_Online_XML_Data/4775434",
doi = "10.15131/shef.data.4775434.v2"
}
"""


_DESCRIPTION = """The dataset consists of 2,163 transcriptions of the Proceedings and 475 Ordinary's Accounts marked up in TEI-XML, 
and contains some documentation covering the data structure and variables. Each Proceedings file represents one session of the court (1674-1913), 
and each Ordinary's Account file represents a single pamphlet (1676-1772)
"""

_HOMEPAGE = "https://www.dhi.ac.uk/projects/old-bailey/"

_DATASETNAME = "old_bailey_proceedings"

_LICENSE = "Creative Commons Attribution 4.0 International"

_URL = "https://www.dhi.ac.uk/san/data/oldbailey/oldbailey.zip"

logger = datasets.utils.logging.get_logger(__name__)


class OldBaileyProceedings(datasets.GeneratorBasedBuilder):
    """The dataset consists of 2,163 transcriptions of the Proceedings and 475 Ordinary's Accounts marked up in TEI-XML,
    and contains some documentation covering the data structure and variables. Each Proceedings file represents one session of the court (1674-1913),
     and each Ordinary's Account file represents a single pamphlet (1676-1772)"""

    VERSION = datasets.Version("7.2.0")

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "text": datasets.Value("string"),
                "places": datasets.Sequence(datasets.Value("string")),
                "type": datasets.Value("string"),
                "persons": datasets.Sequence(datasets.Value("string")),
                "date": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URL)
        oa_dir = "ordinarysAccounts"
        obp_dir = "sessionsPapers"
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_dirs": {
                        "OA": os.path.join(data_dir, oa_dir),
                        "OBP": os.path.join(data_dir, obp_dir),
                    },
                },
            ),
        ]

    def convert_text_to_features(self, file, key):
        if key == "OA":
            root_tag = "p"
        else:
            root_tag = "div1/p"
        try:
            xml_data = ET.parse(file)
            root = xml_data.getroot()
            start = root.find("./text/body/div0")
            id = start.attrib["id"]
            date = start.find("interp[@type='date']").attrib["value"]
            text_parts = []
            places, persons = [], []
            for content in start.findall(root_tag):
                for place in content.findall("placeName"):
                    if place.text:
                        place_name = place.text.replace("\n", "").strip()
                    if place_name:
                        places.append(place.text)
                for person in content.findall("persName"):
                    full_name = []
                    for name_part in person.itertext():
                        name_part = (
                            name_part.replace("\n", "").replace("\t", "").strip()
                        )
                        if name_part:
                            full_name.append(name_part)
                    if full_name:
                        persons.append(" ".join(full_name))
                for text_snippet in content.itertext():
                    text_snippet = (
                        text_snippet.replace("\n", "").replace("\t", "").strip()
                    )
                    if text_snippet:
                        text_parts.append(text_snippet)
            full_text = " ".join(text_parts)
            return (
                0,
                {
                    "id": id,
                    "date": date,
                    "type": key,
                    "places": places,
                    "persons": persons,
                    "text": full_text,
                },
            )
        except Exception as e:
            return -1, repr(e)

    def _generate_examples(self, data_dirs):
        for key, data_dir in data_dirs.items():
            for file in glob.glob(os.path.join(data_dir, "*.xml")):
                status_code, ret_val = self.convert_text_to_features(file, key)
                if status_code:
                    logger.exception(
                        f"{os.path.basename(file)} could not be parsed properly"
                    )
                    continue
                else:
                    yield ret_val["id"], ret_val