File size: 6,283 Bytes
54bc4c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Code copied from: https://github.com/pytorch/data/blob/d9bbbecf64d0149795dc65ba390b50bc9e176e95/torchdata/datapipes/iter/util/tfrecordloader.py
import struct
from functools import partial
from io import BufferedIOBase
from typing import Any, Dict, Iterator, List, NamedTuple, Optional, Tuple, Union, cast
import numpy as np
try:
from math import prod
except ImportError:
import operator
from functools import reduce
def prod(xs):
return reduce(operator.mul, xs, 1)
U = Union[bytes, bytearray, str]
TFRecordFeatureSpec = Tuple[Tuple[int, ...], Union[str, np.dtype]]
TFRecordExampleSpec = Dict[str, TFRecordFeatureSpec]
# Note, reccursive types not supported by mypy at the moment
# TODO(640): uncomment as soon as it becomes supported
# https://github.com/python/mypy/issues/731
# BinaryData = Union[str, List['BinaryData']]
TFRecordBinaryData = Union[str, List[str], List[List[str]], List[List[List[Any]]]]
TFRecordExampleFeature = Union[np.ndarray, List[np.ndarray], TFRecordBinaryData]
TFRecordExample = Dict[str, TFRecordExampleFeature]
class SequenceExampleSpec(NamedTuple):
context: TFRecordExampleSpec
feature_lists: TFRecordExampleSpec
def iterate_tfrecord_file(data: BufferedIOBase) -> Iterator[memoryview]:
length_bytes = bytearray(8)
crc_bytes = bytearray(4)
data_bytes = bytearray(1024)
while True:
bytes_read = data.readinto(length_bytes)
if bytes_read == 0:
break
elif bytes_read != 8:
raise RuntimeError("Invalid tfrecord file: failed to read the record size.")
if data.readinto(crc_bytes) != 4:
raise RuntimeError("Invalid tfrecord file: failed to read the start token.")
(length,) = struct.unpack("<Q", length_bytes)
if length > len(data_bytes):
data_bytes = data_bytes.zfill(int(length * 1.5))
data_bytes_view = memoryview(data_bytes)[:length]
if data.readinto(data_bytes_view) != length:
raise RuntimeError("Invalid tfrecord file: failed to read the record.")
if data.readinto(crc_bytes) != 4:
raise RuntimeError("Invalid tfrecord file: failed to read the end token.")
# TODO(641): check CRC
yield data_bytes_view
def process_feature(feature) -> np.ndarray:
# NOTE: We assume that each key in the example has only one field
# (either "bytes_list", "float_list", or "int64_list")!
field = feature.ListFields()[0]
inferred_typename, value = field[0].name, field[1].value
if inferred_typename == "bytes_list":
pass
elif inferred_typename == "float_list":
value = np.array(value, dtype=np.float32)
elif inferred_typename == "int64_list":
value = np.array(value, dtype=np.int64)
return value
def _reshape_list(value, shape):
# Flatten list
flat_list = []
def flatten(value):
if isinstance(value, (str, bytes)):
flat_list.append(value)
else:
for x in value:
flatten(x)
flatten(value)
# Compute correct shape
common_divisor = prod(x for x in shape if x != -1)
if sum(1 for x in shape if x == -1) > 1:
raise RuntimeError("Shape can contain at most one dynamic dimension (-1).")
if len(flat_list) % max(common_divisor, 1) != 0:
raise RuntimeError(f"Cannot reshape {len(flat_list)} values into shape {shape}")
shape = [x if x != -1 else (len(flat_list) // common_divisor) for x in shape]
# Reshape list into the correct shape
def _reshape(value, shape):
if len(shape) == 0:
assert len(value) == 1
return value[0]
elif len(shape) == 1: # To make the reccursion faster
assert len(value) == shape[0]
return value
dim_size = len(value) // shape[0]
return [_reshape(value[i * dim_size : (i + 1) * dim_size], shape[1:]) for i in range(dim_size)]
return _reshape(flat_list, shape)
def _apply_feature_spec(value, feature_spec):
if isinstance(value, np.ndarray):
if feature_spec is not None:
shape, dtype = feature_spec
if isinstance(dtype, (str, np.dtype)):
if shape:
value = value.reshape(shape)
value = value.astype(dtype)
elif shape:
# Manual list reshape
value = _reshape_list(value, shape)
return value
def _parse_tfrecord_features(features, spec: Optional[TFRecordExampleSpec]) -> Dict[str, np.ndarray]:
result = {}
features = features.feature
for key in features.keys():
if spec is not None and key not in spec:
continue
feature_spec = None if spec is None else spec[key]
feature = features[key]
result[key] = _apply_feature_spec(process_feature(feature), feature_spec)
return result
def parse_tfrecord_sequence_example(example, spec: Optional[TFRecordExampleSpec]) -> TFRecordExample:
# Parse context features
result = cast(TFRecordExample, _parse_tfrecord_features(example.context, spec))
# Parse feature lists
feature_lists_keys = None if spec is None else set(spec.keys()) - set(result.keys())
features = example.feature_lists.feature_list
for key in features.keys():
if feature_lists_keys is not None and key not in feature_lists_keys:
continue
feature_spec = None if spec is None else spec[key]
feature = features[key].feature
if key in result:
raise RuntimeError(
"TFRecord example's key {key} is contained in both the context and feature lists. This is not supported."
)
value: Union[np.ndarray, List[Any]] = list(map(partial(process_feature), feature))
# For known numpy dtypes, we stack the list features
if feature_spec is not None and isinstance(feature_spec[1], (str, np.dtype)):
value = np.stack(cast(List[np.ndarray], value), 0)
value = _apply_feature_spec(value, feature_spec)
result[key] = value
if spec is not None and len(result.keys()) != len(spec.keys()):
raise RuntimeError(f"Example is missing some required keys: {sorted(result.keys())} != {sorted(spec.keys())}")
return result
|