Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
VictorSanh commited on
Commit
89fbe42
·
1 Parent(s): e3e6197

final touches

Browse files
Files changed (1) hide show
  1. P3.py +9 -12
P3.py CHANGED
@@ -57,7 +57,7 @@ def load_cached_task(features_dict, tfrecord):
57
  feat: _feature_config(**desc) for feat, desc in features_dict.items()
58
  }
59
 
60
- ds = tf.data.TFRecordDataset(tf.io.gfile.glob([tfrecord])) #TODO handle multiple shards
61
  ds = ds.map(
62
  lambda pb: tf.io.parse_single_example(pb, feature_description),
63
  num_parallel_calls=tf.data.experimental.AUTOTUNE
@@ -85,16 +85,13 @@ def find_task_splits_and_features_dict():
85
  """Get the task available (list was pre-computed by `print_data_split_sizes.py`), and get the features for each task."""
86
  task_splits_and_features = defaultdict(dict)
87
 
88
- data = read_from_url(f"{_HUB_PATH}/data_split_sizes.csv")
89
- data = [t.strip() for t in data.splitlines()]
90
- data = data[1:]
91
- data = [t.split("|") for t in data]
92
- data = [(t[0], json.loads(t[1])) for t in data]
93
-
94
- for task_name, split_sizes in data:
95
- if "adversarial_qa" not in task_name: #TODO remove
96
- continue
97
 
 
98
  for split_name in split_sizes.keys():
99
  split_info = json.loads(
100
  read_from_url(
@@ -102,7 +99,7 @@ def find_task_splits_and_features_dict():
102
  )
103
  )
104
  features_dict = split_info["features"]
105
- assert split_info["num_shards"] == 1 #TODO -> change to multiple shards
106
 
107
  if not task_splits_and_features[task_name]:
108
  task_splits_and_features[task_name] = {
@@ -119,7 +116,7 @@ _TASK_SPLITS_AND_FEATURES_DICT = find_task_splits_and_features_dict()
119
  _URLs = {
120
  task_name: {
121
  split_name: {
122
- "tfrecord": f"{_DATA_PATH}/{task_name}/{split_name}.tfrecord-00000-of-00001",
123
  }
124
  for split_name in splits_and_features_dict["splits"]
125
  }
 
57
  feat: _feature_config(**desc) for feat, desc in features_dict.items()
58
  }
59
 
60
+ ds = tf.data.TFRecordDataset(tf.io.gfile.glob([tfrecord])) # TODO -> handle multiple shards
61
  ds = ds.map(
62
  lambda pb: tf.io.parse_single_example(pb, feature_description),
63
  num_parallel_calls=tf.data.experimental.AUTOTUNE
 
85
  """Get the task available (list was pre-computed by `print_data_split_sizes.py`), and get the features for each task."""
86
  task_splits_and_features = defaultdict(dict)
87
 
88
+ data_split_sizes = read_from_url(f"{_HUB_PATH}/data_split_sizes.csv")
89
+ data_split_sizes = [t.strip() for t in data_split_sizes.splitlines()]
90
+ data_split_sizes = data_split_sizes[1:]
91
+ data_split_sizes = [t.split("|") for t in data_split_sizes]
92
+ data_split_sizes = [(t[0], json.loads(t[1])) for t in data_split_sizes]
 
 
 
 
93
 
94
+ for task_name, split_sizes in data_split_sizes:
95
  for split_name in split_sizes.keys():
96
  split_info = json.loads(
97
  read_from_url(
 
99
  )
100
  )
101
  features_dict = split_info["features"]
102
+ assert split_info["num_shards"] == 1 # TODO -> handle multiple shards
103
 
104
  if not task_splits_and_features[task_name]:
105
  task_splits_and_features[task_name] = {
 
116
  _URLs = {
117
  task_name: {
118
  split_name: {
119
+ "tfrecord": f"{_DATA_PATH}/{task_name}/{split_name}.tfrecord-00000-of-00001", # TODO -> handle multiple shards
120
  }
121
  for split_name in splits_and_features_dict["splits"]
122
  }