Upload 2 files
Browse files
README.md
CHANGED
@@ -1,69 +1,84 @@
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
config_name: e3c
|
34 |
splits:
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
download_size: 230213492
|
66 |
-
dataset_size:
|
67 |
---
|
68 |
|
69 |
# Dataset Card for E3C
|
@@ -92,4 +107,4 @@ information about clinical entities based on medical taxonomies, to be used for
|
|
92 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
93 |
year = {2021},
|
94 |
}
|
95 |
-
```
|
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
4 |
+
- name: text
|
5 |
+
dtype: string
|
6 |
+
- name: tokens
|
7 |
+
sequence: string
|
8 |
+
- name: tokens_offsets
|
9 |
+
sequence:
|
10 |
+
sequence: int32
|
11 |
+
- name: clinical_entity_tags
|
12 |
+
sequence:
|
13 |
+
class_label:
|
14 |
+
names:
|
15 |
+
"0": O
|
16 |
+
"1": B-CLINENTITY
|
17 |
+
"2": I-CLINENTITY
|
18 |
+
- name: temporal_information_tags
|
19 |
+
sequence:
|
20 |
+
class_label:
|
21 |
+
names:
|
22 |
+
"0": O
|
23 |
+
"1": B-EVENT
|
24 |
+
"2": B-ACTOR
|
25 |
+
"3": B-BODYPART
|
26 |
+
"4": B-TIMEX3
|
27 |
+
"5": B-RML
|
28 |
+
"6": I-EVENT
|
29 |
+
"7": I-ACTOR
|
30 |
+
"8": I-BODYPART
|
31 |
+
"9": I-TIMEX3
|
32 |
+
"10": I-RML
|
33 |
config_name: e3c
|
34 |
splits:
|
35 |
+
- name: en.layer1
|
36 |
+
num_bytes: 1273610
|
37 |
+
num_examples: 1520
|
38 |
+
- name: en.layer2
|
39 |
+
num_bytes: 2550153
|
40 |
+
num_examples: 2873
|
41 |
+
- name: en.layer2.validation
|
42 |
+
num_bytes: 290108
|
43 |
+
num_examples: 334
|
44 |
+
- name: es.layer1
|
45 |
+
num_bytes: 1252571
|
46 |
+
num_examples: 1134
|
47 |
+
- name: es.layer2
|
48 |
+
num_bytes: 2498266
|
49 |
+
num_examples: 2347
|
50 |
+
- name: es.layer2.validation
|
51 |
+
num_bytes: 275770
|
52 |
+
num_examples: 261
|
53 |
+
- name: eu.layer1
|
54 |
+
num_bytes: 1519021
|
55 |
+
num_examples: 3126
|
56 |
+
- name: eu.layer2
|
57 |
+
num_bytes: 839955
|
58 |
+
num_examples: 1594
|
59 |
+
- name: eu.layer2.validation
|
60 |
+
num_bytes: 220097
|
61 |
+
num_examples: 468
|
62 |
+
- name: fr.layer1
|
63 |
+
num_bytes: 1258738
|
64 |
+
num_examples: 1109
|
65 |
+
- name: fr.layer2
|
66 |
+
num_bytes: 2628628
|
67 |
+
num_examples: 2389
|
68 |
+
- name: fr.layer2.validation
|
69 |
+
num_bytes: 282527
|
70 |
+
num_examples: 293
|
71 |
+
- name: it.layer1
|
72 |
+
num_bytes: 1276534
|
73 |
+
num_examples: 1146
|
74 |
+
- name: it.layer2
|
75 |
+
num_bytes: 2641257
|
76 |
+
num_examples: 2436
|
77 |
+
- name: it.layer2.validation
|
78 |
+
num_bytes: 286702
|
79 |
+
num_examples: 275
|
80 |
download_size: 230213492
|
81 |
+
dataset_size: 19093937
|
82 |
---
|
83 |
|
84 |
# Dataset Card for E3C
|
|
|
107 |
url = {https://uts.nlm.nih.gov/uts/umls/home},
|
108 |
year = {2021},
|
109 |
}
|
110 |
+
```
|
e3c.py
CHANGED
@@ -136,6 +136,17 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
136 |
),
|
137 |
},
|
138 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
datasets.SplitGenerator(
|
140 |
name="es.layer1",
|
141 |
gen_kwargs={
|
@@ -158,6 +169,17 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
158 |
),
|
159 |
},
|
160 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
datasets.SplitGenerator(
|
162 |
name="eu.layer1",
|
163 |
gen_kwargs={
|
@@ -180,6 +202,17 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
180 |
),
|
181 |
},
|
182 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
datasets.SplitGenerator(
|
184 |
name="fr.layer1",
|
185 |
gen_kwargs={
|
@@ -202,6 +235,17 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
202 |
),
|
203 |
},
|
204 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
datasets.SplitGenerator(
|
206 |
name="it.layer1",
|
207 |
gen_kwargs={
|
@@ -224,6 +268,17 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
224 |
),
|
225 |
},
|
226 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
]
|
228 |
|
229 |
@staticmethod
|
@@ -289,8 +344,11 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
289 |
for content in self.get_parsed_data(filepath):
|
290 |
for sentence in content["SENTENCE"]:
|
291 |
tokens = [
|
292 |
-
(
|
293 |
-
|
|
|
|
|
|
|
294 |
for token in list(tok.tokenize(sentence[-1]))
|
295 |
]
|
296 |
|
@@ -335,7 +393,7 @@ class E3C(datasets.GeneratorBasedBuilder):
|
|
335 |
temporal_information_labels[idx_token] = f"I-{entity_type}"
|
336 |
yield guid, {
|
337 |
"text": sentence[-1],
|
338 |
-
"tokens": list(map(lambda
|
339 |
"clinical_entity_tags": clinical_labels,
|
340 |
"temporal_information_tags": temporal_information_labels,
|
341 |
"tokens_offsets": tokens_offsets,
|
|
|
136 |
),
|
137 |
},
|
138 |
),
|
139 |
+
datasets.SplitGenerator(
|
140 |
+
name="en.layer2.validation",
|
141 |
+
gen_kwargs={
|
142 |
+
"filepath": os.path.join(
|
143 |
+
data_dir,
|
144 |
+
"E3C-Corpus-2.0.0/data_validation",
|
145 |
+
"English",
|
146 |
+
"layer2",
|
147 |
+
),
|
148 |
+
},
|
149 |
+
),
|
150 |
datasets.SplitGenerator(
|
151 |
name="es.layer1",
|
152 |
gen_kwargs={
|
|
|
169 |
),
|
170 |
},
|
171 |
),
|
172 |
+
datasets.SplitGenerator(
|
173 |
+
name="es.layer2.validation",
|
174 |
+
gen_kwargs={
|
175 |
+
"filepath": os.path.join(
|
176 |
+
data_dir,
|
177 |
+
"E3C-Corpus-2.0.0/data_validation",
|
178 |
+
"Spanish",
|
179 |
+
"layer2",
|
180 |
+
),
|
181 |
+
},
|
182 |
+
),
|
183 |
datasets.SplitGenerator(
|
184 |
name="eu.layer1",
|
185 |
gen_kwargs={
|
|
|
202 |
),
|
203 |
},
|
204 |
),
|
205 |
+
datasets.SplitGenerator(
|
206 |
+
name="eu.layer2.validation",
|
207 |
+
gen_kwargs={
|
208 |
+
"filepath": os.path.join(
|
209 |
+
data_dir,
|
210 |
+
"E3C-Corpus-2.0.0/data_validation",
|
211 |
+
"Basque",
|
212 |
+
"layer2",
|
213 |
+
),
|
214 |
+
},
|
215 |
+
),
|
216 |
datasets.SplitGenerator(
|
217 |
name="fr.layer1",
|
218 |
gen_kwargs={
|
|
|
235 |
),
|
236 |
},
|
237 |
),
|
238 |
+
datasets.SplitGenerator(
|
239 |
+
name="fr.layer2.validation",
|
240 |
+
gen_kwargs={
|
241 |
+
"filepath": os.path.join(
|
242 |
+
data_dir,
|
243 |
+
"E3C-Corpus-2.0.0/data_validation",
|
244 |
+
"French",
|
245 |
+
"layer2",
|
246 |
+
),
|
247 |
+
},
|
248 |
+
),
|
249 |
datasets.SplitGenerator(
|
250 |
name="it.layer1",
|
251 |
gen_kwargs={
|
|
|
268 |
),
|
269 |
},
|
270 |
),
|
271 |
+
datasets.SplitGenerator(
|
272 |
+
name="it.layer2.validation",
|
273 |
+
gen_kwargs={
|
274 |
+
"filepath": os.path.join(
|
275 |
+
data_dir,
|
276 |
+
"E3C-Corpus-2.0.0/data_validation",
|
277 |
+
"Italian",
|
278 |
+
"layer2",
|
279 |
+
),
|
280 |
+
},
|
281 |
+
),
|
282 |
]
|
283 |
|
284 |
@staticmethod
|
|
|
344 |
for content in self.get_parsed_data(filepath):
|
345 |
for sentence in content["SENTENCE"]:
|
346 |
tokens = [
|
347 |
+
(
|
348 |
+
token.offset + sentence[0],
|
349 |
+
token.offset + sentence[0] + len(token.value),
|
350 |
+
token.value,
|
351 |
+
)
|
352 |
for token in list(tok.tokenize(sentence[-1]))
|
353 |
]
|
354 |
|
|
|
393 |
temporal_information_labels[idx_token] = f"I-{entity_type}"
|
394 |
yield guid, {
|
395 |
"text": sentence[-1],
|
396 |
+
"tokens": list(map(lambda token: token[2], filtered_tokens)),
|
397 |
"clinical_entity_tags": clinical_labels,
|
398 |
"temporal_information_tags": temporal_information_labels,
|
399 |
"tokens_offsets": tokens_offsets,
|