smeoni commited on
Commit
ccc963f
·
1 Parent(s): 00399e7

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +76 -61
  2. e3c.py +61 -3
README.md CHANGED
@@ -1,69 +1,84 @@
1
  ---
2
  dataset_info:
3
  features:
4
- - name: text
5
- dtype: string
6
- - name: tokens
7
- sequence: string
8
- - name: tokens_offsets
9
- sequence:
10
- sequence: int32
11
- - name: clinical_entity_tags
12
- sequence:
13
- class_label:
14
- names:
15
- '0': O
16
- '1': B-CLINENTITY
17
- '2': I-CLINENTITY
18
- - name: temporal_information_tags
19
- sequence:
20
- class_label:
21
- names:
22
- '0': O
23
- '1': B-EVENT
24
- '2': B-ACTOR
25
- '3': B-BODYPART
26
- '4': B-TIMEX3
27
- '5': B-RML
28
- '6': I-EVENT
29
- '7': I-ACTOR
30
- '8': I-BODYPART
31
- '9': I-TIMEX3
32
- '10': I-RML
33
  config_name: e3c
34
  splits:
35
- - name: en.layer1
36
- num_bytes: 1273610
37
- num_examples: 1520
38
- - name: en.layer2
39
- num_bytes: 2550153
40
- num_examples: 2873
41
- - name: es.layer1
42
- num_bytes: 1252571
43
- num_examples: 1134
44
- - name: es.layer2
45
- num_bytes: 2498266
46
- num_examples: 2347
47
- - name: eu.layer1
48
- num_bytes: 1519021
49
- num_examples: 3126
50
- - name: eu.layer2
51
- num_bytes: 839955
52
- num_examples: 1594
53
- - name: fr.layer1
54
- num_bytes: 1258738
55
- num_examples: 1109
56
- - name: fr.layer2
57
- num_bytes: 2628628
58
- num_examples: 2389
59
- - name: it.layer1
60
- num_bytes: 1276534
61
- num_examples: 1146
62
- - name: it.layer2
63
- num_bytes: 2641257
64
- num_examples: 2436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  download_size: 230213492
66
- dataset_size: 17738733
67
  ---
68
 
69
  # Dataset Card for E3C
@@ -92,4 +107,4 @@ information about clinical entities based on medical taxonomies, to be used for
92
  url = {https://uts.nlm.nih.gov/uts/umls/home},
93
  year = {2021},
94
  }
95
- ```
 
1
  ---
2
  dataset_info:
3
  features:
4
+ - name: text
5
+ dtype: string
6
+ - name: tokens
7
+ sequence: string
8
+ - name: tokens_offsets
9
+ sequence:
10
+ sequence: int32
11
+ - name: clinical_entity_tags
12
+ sequence:
13
+ class_label:
14
+ names:
15
+ "0": O
16
+ "1": B-CLINENTITY
17
+ "2": I-CLINENTITY
18
+ - name: temporal_information_tags
19
+ sequence:
20
+ class_label:
21
+ names:
22
+ "0": O
23
+ "1": B-EVENT
24
+ "2": B-ACTOR
25
+ "3": B-BODYPART
26
+ "4": B-TIMEX3
27
+ "5": B-RML
28
+ "6": I-EVENT
29
+ "7": I-ACTOR
30
+ "8": I-BODYPART
31
+ "9": I-TIMEX3
32
+ "10": I-RML
33
  config_name: e3c
34
  splits:
35
+ - name: en.layer1
36
+ num_bytes: 1273610
37
+ num_examples: 1520
38
+ - name: en.layer2
39
+ num_bytes: 2550153
40
+ num_examples: 2873
41
+ - name: en.layer2.validation
42
+ num_bytes: 290108
43
+ num_examples: 334
44
+ - name: es.layer1
45
+ num_bytes: 1252571
46
+ num_examples: 1134
47
+ - name: es.layer2
48
+ num_bytes: 2498266
49
+ num_examples: 2347
50
+ - name: es.layer2.validation
51
+ num_bytes: 275770
52
+ num_examples: 261
53
+ - name: eu.layer1
54
+ num_bytes: 1519021
55
+ num_examples: 3126
56
+ - name: eu.layer2
57
+ num_bytes: 839955
58
+ num_examples: 1594
59
+ - name: eu.layer2.validation
60
+ num_bytes: 220097
61
+ num_examples: 468
62
+ - name: fr.layer1
63
+ num_bytes: 1258738
64
+ num_examples: 1109
65
+ - name: fr.layer2
66
+ num_bytes: 2628628
67
+ num_examples: 2389
68
+ - name: fr.layer2.validation
69
+ num_bytes: 282527
70
+ num_examples: 293
71
+ - name: it.layer1
72
+ num_bytes: 1276534
73
+ num_examples: 1146
74
+ - name: it.layer2
75
+ num_bytes: 2641257
76
+ num_examples: 2436
77
+ - name: it.layer2.validation
78
+ num_bytes: 286702
79
+ num_examples: 275
80
  download_size: 230213492
81
+ dataset_size: 19093937
82
  ---
83
 
84
  # Dataset Card for E3C
 
107
  url = {https://uts.nlm.nih.gov/uts/umls/home},
108
  year = {2021},
109
  }
110
+ ```
e3c.py CHANGED
@@ -136,6 +136,17 @@ class E3C(datasets.GeneratorBasedBuilder):
136
  ),
137
  },
138
  ),
 
 
 
 
 
 
 
 
 
 
 
139
  datasets.SplitGenerator(
140
  name="es.layer1",
141
  gen_kwargs={
@@ -158,6 +169,17 @@ class E3C(datasets.GeneratorBasedBuilder):
158
  ),
159
  },
160
  ),
 
 
 
 
 
 
 
 
 
 
 
161
  datasets.SplitGenerator(
162
  name="eu.layer1",
163
  gen_kwargs={
@@ -180,6 +202,17 @@ class E3C(datasets.GeneratorBasedBuilder):
180
  ),
181
  },
182
  ),
 
 
 
 
 
 
 
 
 
 
 
183
  datasets.SplitGenerator(
184
  name="fr.layer1",
185
  gen_kwargs={
@@ -202,6 +235,17 @@ class E3C(datasets.GeneratorBasedBuilder):
202
  ),
203
  },
204
  ),
 
 
 
 
 
 
 
 
 
 
 
205
  datasets.SplitGenerator(
206
  name="it.layer1",
207
  gen_kwargs={
@@ -224,6 +268,17 @@ class E3C(datasets.GeneratorBasedBuilder):
224
  ),
225
  },
226
  ),
 
 
 
 
 
 
 
 
 
 
 
227
  ]
228
 
229
  @staticmethod
@@ -289,8 +344,11 @@ class E3C(datasets.GeneratorBasedBuilder):
289
  for content in self.get_parsed_data(filepath):
290
  for sentence in content["SENTENCE"]:
291
  tokens = [
292
- (token.offset + sentence[0], token.offset + sentence[0] + len(token.value),
293
- token.value)
 
 
 
294
  for token in list(tok.tokenize(sentence[-1]))
295
  ]
296
 
@@ -335,7 +393,7 @@ class E3C(datasets.GeneratorBasedBuilder):
335
  temporal_information_labels[idx_token] = f"I-{entity_type}"
336
  yield guid, {
337
  "text": sentence[-1],
338
- "tokens": list(map(lambda tokens: tokens[2], filtered_tokens)),
339
  "clinical_entity_tags": clinical_labels,
340
  "temporal_information_tags": temporal_information_labels,
341
  "tokens_offsets": tokens_offsets,
 
136
  ),
137
  },
138
  ),
139
+ datasets.SplitGenerator(
140
+ name="en.layer2.validation",
141
+ gen_kwargs={
142
+ "filepath": os.path.join(
143
+ data_dir,
144
+ "E3C-Corpus-2.0.0/data_validation",
145
+ "English",
146
+ "layer2",
147
+ ),
148
+ },
149
+ ),
150
  datasets.SplitGenerator(
151
  name="es.layer1",
152
  gen_kwargs={
 
169
  ),
170
  },
171
  ),
172
+ datasets.SplitGenerator(
173
+ name="es.layer2.validation",
174
+ gen_kwargs={
175
+ "filepath": os.path.join(
176
+ data_dir,
177
+ "E3C-Corpus-2.0.0/data_validation",
178
+ "Spanish",
179
+ "layer2",
180
+ ),
181
+ },
182
+ ),
183
  datasets.SplitGenerator(
184
  name="eu.layer1",
185
  gen_kwargs={
 
202
  ),
203
  },
204
  ),
205
+ datasets.SplitGenerator(
206
+ name="eu.layer2.validation",
207
+ gen_kwargs={
208
+ "filepath": os.path.join(
209
+ data_dir,
210
+ "E3C-Corpus-2.0.0/data_validation",
211
+ "Basque",
212
+ "layer2",
213
+ ),
214
+ },
215
+ ),
216
  datasets.SplitGenerator(
217
  name="fr.layer1",
218
  gen_kwargs={
 
235
  ),
236
  },
237
  ),
238
+ datasets.SplitGenerator(
239
+ name="fr.layer2.validation",
240
+ gen_kwargs={
241
+ "filepath": os.path.join(
242
+ data_dir,
243
+ "E3C-Corpus-2.0.0/data_validation",
244
+ "French",
245
+ "layer2",
246
+ ),
247
+ },
248
+ ),
249
  datasets.SplitGenerator(
250
  name="it.layer1",
251
  gen_kwargs={
 
268
  ),
269
  },
270
  ),
271
+ datasets.SplitGenerator(
272
+ name="it.layer2.validation",
273
+ gen_kwargs={
274
+ "filepath": os.path.join(
275
+ data_dir,
276
+ "E3C-Corpus-2.0.0/data_validation",
277
+ "Italian",
278
+ "layer2",
279
+ ),
280
+ },
281
+ ),
282
  ]
283
 
284
  @staticmethod
 
344
  for content in self.get_parsed_data(filepath):
345
  for sentence in content["SENTENCE"]:
346
  tokens = [
347
+ (
348
+ token.offset + sentence[0],
349
+ token.offset + sentence[0] + len(token.value),
350
+ token.value,
351
+ )
352
  for token in list(tok.tokenize(sentence[-1]))
353
  ]
354
 
 
393
  temporal_information_labels[idx_token] = f"I-{entity_type}"
394
  yield guid, {
395
  "text": sentence[-1],
396
+ "tokens": list(map(lambda token: token[2], filtered_tokens)),
397
  "clinical_entity_tags": clinical_labels,
398
  "temporal_information_tags": temporal_information_labels,
399
  "tokens_offsets": tokens_offsets,