louni-g commited on
Commit
b993a52
1 Parent(s): 53890fa

First version of the re-medical-annotations dataset.

Browse files
Files changed (2) hide show
  1. README.md +33 -0
  2. dataset.py +126 -0
README.md ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Dataset Card for re-medical-annotations
2
+
3
+ ## Dataset Description
4
+
5
+ ### Dataset Summary
6
+
7
+ HuggingFace Dataset from the Inception Medical Annotations project.
8
+
9
+ This dataset can be used locally with any archive downloaded from Inception that contains relation annotations.
10
+
11
+ **Example**: load the dataset from the "RE Temporality POC"
12
+
13
+ ```
14
+ import datasets
15
+
16
+ ds = datasets.load_dataset(
17
+ data_dir=<Inception Archive path>,
18
+ labels = ["bound"],
19
+ )
20
+ ```
21
+
22
+ ## Dataset Structure
23
+
24
+ ### Data Fields
25
+
26
+ - `text (str)`: text of the sentence
27
+ - `subj_start (int)`: start char of the relation subject mention
28
+ - `subj_end (int)`: end char of the relation subject mention, exclusive
29
+ - `subj_type (str)`: NER label of the relation subject
30
+ - `obj_start (int)`: start char of the relation object mention
31
+ - `obj_end (int)`: end char of the relation object mention, exclusive
32
+ - `obj_type (str)`: NER label of the relation object
33
+ - `relation (str)`: the relation label of this instance
dataset.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """RE Dataset, Arkhn style."""
2
+ import itertools
3
+ import os
4
+ import zipfile
5
+ from dataclasses import dataclass
6
+ from glob import glob
7
+ from pathlib import Path
8
+ from typing import Optional
9
+
10
+ import datasets
11
+ from cassis import Cas, load_cas_from_xmi, load_typesystem
12
+
13
+ # You can copy an official description
14
+ _DESCRIPTION = (
15
+ "This dataset is designed to solve the great task of Relation Extraction and "
16
+ "is crafted with a lot of care."
17
+ )
18
+
19
+ SENTENCE_CAS = "de.tudarmstadt.ukp.dkpro.core.api.segmentation.type.Sentence"
20
+ CUSTOM_RELATION_CAS = "custom.Relation"
21
+ DOCUMENT_METADATA = "de.tudarmstadt.ukp.dkpro.core.api.metadata.type.DocumentMetaData"
22
+ CUSTOM_SPAN = "custom.Span"
23
+
24
+
25
+ @dataclass
26
+ class ReMedicalAnnotationsConfig(datasets.BuilderConfig):
27
+ """BuilderConfig for ReMedicalAnnotations dataset."""
28
+
29
+ labels: Optional[list[str]] = None
30
+
31
+
32
+ class ReMedicalAnnotations(datasets.GeneratorBasedBuilder):
33
+ """This dataset is designed to solve the great task of Relation Extraction and is crafted
34
+ with a lot of care."""
35
+
36
+ BUILDER_CONFIG_CLASS = ReMedicalAnnotationsConfig
37
+ VERSION = datasets.Version("1.1.0")
38
+
39
+ def _info(self):
40
+
41
+ return datasets.DatasetInfo(
42
+ # This is the description that will appear on the datasets page.
43
+ description=_DESCRIPTION,
44
+ # This defines the different columns of the dataset and their types
45
+ features=datasets.Features(
46
+ {
47
+ "text": datasets.Value("string"),
48
+ "subj_start": datasets.Value("int32"),
49
+ "subj_end": datasets.Value("int32"),
50
+ "subj_type": datasets.Value("string"),
51
+ "obj_start": datasets.Value("int32"),
52
+ "obj_end": datasets.Value("int32"),
53
+ "obj_type": datasets.Value("string"),
54
+ "relation": datasets.ClassLabel(names=["no_relation"] + self.config.labels),
55
+ }
56
+ ),
57
+ )
58
+
59
+ def _split_generators(self, dl_manager):
60
+ data_dir = dl_manager.extract(self.config.data_dir)
61
+ return [
62
+ datasets.SplitGenerator(
63
+ name=datasets.Split.TRAIN,
64
+ # These kwargs will be passed to _generate_examples
65
+ gen_kwargs={
66
+ "filepath": data_dir,
67
+ "split": "all",
68
+ },
69
+ )
70
+ ]
71
+
72
+ @staticmethod
73
+ def get_cas_objects(filepath: str):
74
+ cas_objects: list[Cas] = []
75
+
76
+ curation_path = os.path.join(filepath, "curation")
77
+ for zip_subset_path in sorted(glob(curation_path + "/**/*.zip")):
78
+ with zipfile.ZipFile(zip_subset_path) as zip_subset:
79
+ subset_folder = str(Path(zip_subset_path).parent)
80
+ zip_subset.extractall(subset_folder)
81
+ with open(glob(subset_folder + "/*.xml")[0], "rb") as f:
82
+ typesystem = load_typesystem(f)
83
+ with open(glob(subset_folder + "/*.xmi")[0], "rb") as f:
84
+ cas = load_cas_from_xmi(f, typesystem=typesystem)
85
+ cas_objects.append(cas)
86
+
87
+ return cas_objects
88
+
89
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
90
+ def _generate_examples(self, filepath: str, split: str):
91
+ """Generate RE examples from an unzipped Inception dataset."""
92
+ key = 0
93
+ for cas in self.get_cas_objects(filepath=filepath):
94
+ examples = cas.select(SENTENCE_CAS)
95
+ for example in examples:
96
+ offset = (
97
+ cas.select(DOCUMENT_METADATA)[0]
98
+ .get_covered_text()
99
+ .find(example.get_covered_text())
100
+ )
101
+
102
+ # retrieve all the relations as tuples (dependant, governor) with the span ids
103
+ # and the corresponding relation label
104
+ relations = {}
105
+ for relation in cas.select_covered(CUSTOM_RELATION_CAS, example):
106
+ relations[(relation.Dependent.xmiID, relation.Governor.xmiID)] = relation.label
107
+
108
+ # Create all possible combinations of 2 entities (we keep in undirected for now)
109
+ entities = cas.select_covered(CUSTOM_SPAN, example)
110
+ combinations = itertools.combinations(entities, 2)
111
+ for ent1, ent2 in combinations:
112
+ if (ent1.xmiID, ent2.xmiID) in relations.keys():
113
+ relation = relations[(ent1.xmiID, ent2.xmiID)]
114
+ else:
115
+ relation = "no_relation"
116
+ yield key, {
117
+ "text": example.get_covered_text(),
118
+ "subj_start": ent1.begin - offset,
119
+ "subj_end": ent1.end - offset,
120
+ "subj_type": ent1.label,
121
+ "obj_start": ent2.begin - offset,
122
+ "obj_end": ent2.end - offset,
123
+ "obj_type": ent2.label,
124
+ "relation": relation,
125
+ }
126
+ key += 1