Support 'domains, 'load_from' and redistribute dev and test while loading
Browse files
qanom.py
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
|
17 |
|
18 |
from dataclasses import dataclass
|
19 |
-
from typing import Optional, Tuple
|
20 |
import datasets
|
21 |
from pathlib import Path
|
22 |
import pandas as pd
|
@@ -76,13 +76,17 @@ _URLs = {
|
|
76 |
|
77 |
SpanFeatureType = datasets.Sequence(datasets.Value("int32"), length=2)
|
78 |
|
|
|
|
|
79 |
@dataclass
|
80 |
class QANomBuilderConfig(datasets.BuilderConfig):
|
81 |
""" Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
|
82 |
redistribute_dev: Tuple[float, float, float] = (0., 1., 0.)
|
83 |
redistribute_test: Tuple[float, float, float] = (0., 0., 1.)
|
84 |
load_from: str = "jsonl" # "csv" or "jsonl"
|
85 |
-
|
|
|
|
|
86 |
|
87 |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
88 |
class Qanom(datasets.GeneratorBasedBuilder):
|
@@ -93,7 +97,7 @@ class Qanom(datasets.GeneratorBasedBuilder):
|
|
93 |
are for canidate nominalization which are judged to be non-predicates ("is_verbal"==False) or predicates with no QAs.
|
94 |
In these cases, the qa fields (question, answers, answer_ranges) would be empty lists. """
|
95 |
|
96 |
-
VERSION = datasets.Version("1.
|
97 |
|
98 |
BUILDER_CONFIG_CLASS = QANomBuilderConfig
|
99 |
|
@@ -154,7 +158,22 @@ class Qanom(datasets.GeneratorBasedBuilder):
|
|
154 |
"""Returns SplitGenerators."""
|
155 |
|
156 |
assert self.config.load_from in ("csv", "jsonl")
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
self.corpus_base_path = Path(dl_manager.download_and_extract(_URLs[f"qanom_{self.config.load_from}"]))
|
159 |
if self.config.load_from == "csv":
|
160 |
# prepare wiktionary for verb inflections inside 'self.verb_inflections'
|
@@ -239,6 +258,11 @@ class Qanom(datasets.GeneratorBasedBuilder):
|
|
239 |
sent_obj = json.loads(line.strip())
|
240 |
tokens = sent_obj['sentenceTokens']
|
241 |
sentence = ' '.join(tokens)
|
|
|
|
|
|
|
|
|
|
|
242 |
for predicate_idx, verb_obj in sent_obj['verbEntries'].items():
|
243 |
verb_forms = verb_obj['verbInflectedForms']
|
244 |
predicate = tokens[int(predicate_idx)]
|
@@ -268,7 +292,7 @@ class Qanom(datasets.GeneratorBasedBuilder):
|
|
268 |
|
269 |
yield qa_counter, {
|
270 |
"sentence": sentence,
|
271 |
-
"sent_id":
|
272 |
"predicate_idx": predicate_idx,
|
273 |
"predicate": predicate,
|
274 |
"is_verbal": True,
|
@@ -313,6 +337,11 @@ class Qanom(datasets.GeneratorBasedBuilder):
|
|
313 |
for counter, row in df.iterrows():
|
314 |
# Each record (row) in csv is a QA or is stating a predicate/non-predicate with no QAs
|
315 |
|
|
|
|
|
|
|
|
|
|
|
316 |
# Prepare question (slots)
|
317 |
na_to_underscore = lambda s: "_" if pd.isna(s) else str(s)
|
318 |
question = [] if pd.isna(row.question) else list(map(na_to_underscore, [
|
|
|
16 |
|
17 |
|
18 |
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union, Iterable, Set
|
20 |
import datasets
|
21 |
from pathlib import Path
|
22 |
import pandas as pd
|
|
|
76 |
|
77 |
SpanFeatureType = datasets.Sequence(datasets.Value("int32"), length=2)
|
78 |
|
79 |
+
SUPPOERTED_DOMAINS = {"wikinews", "wikipedia"}
|
80 |
+
|
81 |
@dataclass
|
82 |
class QANomBuilderConfig(datasets.BuilderConfig):
|
83 |
""" Allow the loader to re-distribute the original dev and test splits between train, dev and test. """
|
84 |
redistribute_dev: Tuple[float, float, float] = (0., 1., 0.)
|
85 |
redistribute_test: Tuple[float, float, float] = (0., 0., 1.)
|
86 |
load_from: str = "jsonl" # "csv" or "jsonl"
|
87 |
+
domains: Union[str, Iterable[str]] = "all" # can provide also a subset of acceptable domains.
|
88 |
+
# Acceptable domains are {"wikipedia", "wikinews"} for dev and test (qasrl-2020)
|
89 |
+
# and {"wikipedia", "wikinews", "TQA"} for train (qasrl-2018)
|
90 |
|
91 |
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
92 |
class Qanom(datasets.GeneratorBasedBuilder):
|
|
|
97 |
are for canidate nominalization which are judged to be non-predicates ("is_verbal"==False) or predicates with no QAs.
|
98 |
In these cases, the qa fields (question, answers, answer_ranges) would be empty lists. """
|
99 |
|
100 |
+
VERSION = datasets.Version("1.2.0")
|
101 |
|
102 |
BUILDER_CONFIG_CLASS = QANomBuilderConfig
|
103 |
|
|
|
158 |
"""Returns SplitGenerators."""
|
159 |
|
160 |
assert self.config.load_from in ("csv", "jsonl")
|
161 |
+
|
162 |
+
# Handle domain selection
|
163 |
+
domains: Set[str] = []
|
164 |
+
if self.config.domains == "all":
|
165 |
+
domains = SUPPOERTED_DOMAINS
|
166 |
+
elif isinstance(self.config.domains, str):
|
167 |
+
if self.config.domains in SUPPOERTED_DOMAINS:
|
168 |
+
domains = {self.config.domains}
|
169 |
+
else:
|
170 |
+
raise ValueError(f"Unrecognized domain '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported")
|
171 |
+
else:
|
172 |
+
domains = set(self.config.domains) & SUPPOERTED_DOMAINS
|
173 |
+
if len(domains) == 0:
|
174 |
+
raise ValueError(f"Unrecognized domains '{self.config.domains}'; only {SUPPOERTED_DOMAINS} are supported")
|
175 |
+
self.config.domains = domains
|
176 |
+
|
177 |
self.corpus_base_path = Path(dl_manager.download_and_extract(_URLs[f"qanom_{self.config.load_from}"]))
|
178 |
if self.config.load_from == "csv":
|
179 |
# prepare wiktionary for verb inflections inside 'self.verb_inflections'
|
|
|
258 |
sent_obj = json.loads(line.strip())
|
259 |
tokens = sent_obj['sentenceTokens']
|
260 |
sentence = ' '.join(tokens)
|
261 |
+
sent_id = sent_obj['sentenceId']
|
262 |
+
# consider only selected domains
|
263 |
+
sent_domain = sent_id.split(":")[1]
|
264 |
+
if sent_domain not in self.config.domains:
|
265 |
+
continue
|
266 |
for predicate_idx, verb_obj in sent_obj['verbEntries'].items():
|
267 |
verb_forms = verb_obj['verbInflectedForms']
|
268 |
predicate = tokens[int(predicate_idx)]
|
|
|
292 |
|
293 |
yield qa_counter, {
|
294 |
"sentence": sentence,
|
295 |
+
"sent_id": sent_id,
|
296 |
"predicate_idx": predicate_idx,
|
297 |
"predicate": predicate,
|
298 |
"is_verbal": True,
|
|
|
337 |
for counter, row in df.iterrows():
|
338 |
# Each record (row) in csv is a QA or is stating a predicate/non-predicate with no QAs
|
339 |
|
340 |
+
# consider only selected domains
|
341 |
+
sent_domain = row.qasrl_id.split(":")[1]
|
342 |
+
if sent_domain not in self.config.domains:
|
343 |
+
continue
|
344 |
+
|
345 |
# Prepare question (slots)
|
346 |
na_to_underscore = lambda s: "_" if pd.isna(s) else str(s)
|
347 |
question = [] if pd.isna(row.question) else list(map(na_to_underscore, [
|