Search is not available for this dataset
identifier
stringlengths 1
155
| parameters
stringlengths 2
6.09k
| docstring
stringlengths 11
63.4k
| docstring_summary
stringlengths 0
63.4k
| function
stringlengths 29
99.8k
| function_tokens
sequence | start_point
sequence | end_point
sequence | language
stringclasses 1
value | docstring_language
stringlengths 2
7
| docstring_language_predictions
stringlengths 18
23
| is_langid_reliable
stringclasses 2
values |
---|---|---|---|---|---|---|---|---|---|---|---|
Unauthorized.__init__ | (
self,
context: Optional["Context"] = None,
user_id: Optional[str] = None,
entity_id: Optional[str] = None,
config_entry_id: Optional[str] = None,
perm_category: Optional[str] = None,
permission: Optional[str] = None,
) | Unauthorized error. | Unauthorized error. | def __init__(
self,
context: Optional["Context"] = None,
user_id: Optional[str] = None,
entity_id: Optional[str] = None,
config_entry_id: Optional[str] = None,
perm_category: Optional[str] = None,
permission: Optional[str] = None,
) -> None:
"""Unauthorized error."""
super().__init__(self.__class__.__name__)
self.context = context
if user_id is None and context is not None:
user_id = context.user_id
self.user_id = user_id
self.entity_id = entity_id
self.config_entry_id = config_entry_id
# Not all actions have an ID (like adding config entry)
# We then use this fallback to know what category was unauth
self.perm_category = perm_category
self.permission = permission | [
"def",
"__init__",
"(",
"self",
",",
"context",
":",
"Optional",
"[",
"\"Context\"",
"]",
"=",
"None",
",",
"user_id",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
"entity_id",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
"config_entry_id",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
"perm_category",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
"permission",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
",",
")",
"->",
"None",
":",
"super",
"(",
")",
".",
"__init__",
"(",
"self",
".",
"__class__",
".",
"__name__",
")",
"self",
".",
"context",
"=",
"context",
"if",
"user_id",
"is",
"None",
"and",
"context",
"is",
"not",
"None",
":",
"user_id",
"=",
"context",
".",
"user_id",
"self",
".",
"user_id",
"=",
"user_id",
"self",
".",
"entity_id",
"=",
"entity_id",
"self",
".",
"config_entry_id",
"=",
"config_entry_id",
"# Not all actions have an ID (like adding config entry)",
"# We then use this fallback to know what category was unauth",
"self",
".",
"perm_category",
"=",
"perm_category",
"self",
".",
"permission",
"=",
"permission"
] | [
42,
4
] | [
64,
36
] | python | de | ['de', 'sr', 'it'] | False |
ServiceNotFound.__init__ | (self, domain: str, service: str) | Initialize error. | Initialize error. | def __init__(self, domain: str, service: str) -> None:
"""Initialize error."""
super().__init__(self, f"Service {domain}.{service} not found")
self.domain = domain
self.service = service | [
"def",
"__init__",
"(",
"self",
",",
"domain",
":",
"str",
",",
"service",
":",
"str",
")",
"->",
"None",
":",
"super",
"(",
")",
".",
"__init__",
"(",
"self",
",",
"f\"Service {domain}.{service} not found\"",
")",
"self",
".",
"domain",
"=",
"domain",
"self",
".",
"service",
"=",
"service"
] | [
74,
4
] | [
78,
30
] | python | da | ['da', 'la', 'it'] | False |
ServiceNotFound.__str__ | (self) | Return string representation. | Return string representation. | def __str__(self) -> str:
"""Return string representation."""
return f"Unable to find service {self.domain}/{self.service}" | [
"def",
"__str__",
"(",
"self",
")",
"->",
"str",
":",
"return",
"f\"Unable to find service {self.domain}/{self.service}\""
] | [
80,
4
] | [
82,
69
] | python | en | ['en', 'no', 'en'] | True |
run | (args) | Handle keyring script. | Handle keyring script. | def run(args):
"""Handle keyring script."""
parser = argparse.ArgumentParser(
description=(
"Modify Home Assistant secrets in the default keyring. "
"Use the secrets in configuration files with: "
"!secret <name>"
)
)
parser.add_argument("--script", choices=["keyring"])
parser.add_argument(
"action",
choices=["get", "set", "del", "info"],
help="Get, set or delete a secret",
)
parser.add_argument("name", help="Name of the secret", nargs="?", default=None)
import keyring # pylint: disable=import-outside-toplevel
# pylint: disable=import-outside-toplevel
from keyring.util import platform_ as platform
args = parser.parse_args(args)
if args.action == "info":
keyr = keyring.get_keyring()
print("Keyring version {}\n".format(REQUIREMENTS[0].split("==")[1]))
print(f"Active keyring : {keyr.__module__}")
config_name = os.path.join(platform.config_root(), "keyringrc.cfg")
print(f"Config location : {config_name}")
print(f"Data location : {platform.data_root()}\n")
elif args.name is None:
parser.print_help()
return 1
if args.action == "set":
entered_secret = getpass.getpass(f"Please enter the secret for {args.name}: ")
keyring.set_password(_SECRET_NAMESPACE, args.name, entered_secret)
print(f"Secret {args.name} set successfully")
elif args.action == "get":
the_secret = keyring.get_password(_SECRET_NAMESPACE, args.name)
if the_secret is None:
print(f"Secret {args.name} not found")
else:
print(f"Secret {args.name}={the_secret}")
elif args.action == "del":
try:
keyring.delete_password(_SECRET_NAMESPACE, args.name)
print(f"Deleted secret {args.name}")
except keyring.errors.PasswordDeleteError:
print(f"Secret {args.name} not found") | [
"def",
"run",
"(",
"args",
")",
":",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
"description",
"=",
"(",
"\"Modify Home Assistant secrets in the default keyring. \"",
"\"Use the secrets in configuration files with: \"",
"\"!secret <name>\"",
")",
")",
"parser",
".",
"add_argument",
"(",
"\"--script\"",
",",
"choices",
"=",
"[",
"\"keyring\"",
"]",
")",
"parser",
".",
"add_argument",
"(",
"\"action\"",
",",
"choices",
"=",
"[",
"\"get\"",
",",
"\"set\"",
",",
"\"del\"",
",",
"\"info\"",
"]",
",",
"help",
"=",
"\"Get, set or delete a secret\"",
",",
")",
"parser",
".",
"add_argument",
"(",
"\"name\"",
",",
"help",
"=",
"\"Name of the secret\"",
",",
"nargs",
"=",
"\"?\"",
",",
"default",
"=",
"None",
")",
"import",
"keyring",
"# pylint: disable=import-outside-toplevel",
"# pylint: disable=import-outside-toplevel",
"from",
"keyring",
".",
"util",
"import",
"platform_",
"as",
"platform",
"args",
"=",
"parser",
".",
"parse_args",
"(",
"args",
")",
"if",
"args",
".",
"action",
"==",
"\"info\"",
":",
"keyr",
"=",
"keyring",
".",
"get_keyring",
"(",
")",
"print",
"(",
"\"Keyring version {}\\n\"",
".",
"format",
"(",
"REQUIREMENTS",
"[",
"0",
"]",
".",
"split",
"(",
"\"==\"",
")",
"[",
"1",
"]",
")",
")",
"print",
"(",
"f\"Active keyring : {keyr.__module__}\"",
")",
"config_name",
"=",
"os",
".",
"path",
".",
"join",
"(",
"platform",
".",
"config_root",
"(",
")",
",",
"\"keyringrc.cfg\"",
")",
"print",
"(",
"f\"Config location : {config_name}\"",
")",
"print",
"(",
"f\"Data location : {platform.data_root()}\\n\"",
")",
"elif",
"args",
".",
"name",
"is",
"None",
":",
"parser",
".",
"print_help",
"(",
")",
"return",
"1",
"if",
"args",
".",
"action",
"==",
"\"set\"",
":",
"entered_secret",
"=",
"getpass",
".",
"getpass",
"(",
"f\"Please enter the secret for {args.name}: \"",
")",
"keyring",
".",
"set_password",
"(",
"_SECRET_NAMESPACE",
",",
"args",
".",
"name",
",",
"entered_secret",
")",
"print",
"(",
"f\"Secret {args.name} set successfully\"",
")",
"elif",
"args",
".",
"action",
"==",
"\"get\"",
":",
"the_secret",
"=",
"keyring",
".",
"get_password",
"(",
"_SECRET_NAMESPACE",
",",
"args",
".",
"name",
")",
"if",
"the_secret",
"is",
"None",
":",
"print",
"(",
"f\"Secret {args.name} not found\"",
")",
"else",
":",
"print",
"(",
"f\"Secret {args.name}={the_secret}\"",
")",
"elif",
"args",
".",
"action",
"==",
"\"del\"",
":",
"try",
":",
"keyring",
".",
"delete_password",
"(",
"_SECRET_NAMESPACE",
",",
"args",
".",
"name",
")",
"print",
"(",
"f\"Deleted secret {args.name}\"",
")",
"except",
"keyring",
".",
"errors",
".",
"PasswordDeleteError",
":",
"print",
"(",
"f\"Secret {args.name} not found\"",
")"
] | [
11,
0
] | [
61,
50
] | python | en | ['en', 'af', 'en'] | True |
websocket_client | (hass, hass_ws_client) | Create a websocket client. | Create a websocket client. | async def websocket_client(hass, hass_ws_client):
"""Create a websocket client."""
return await hass_ws_client(hass) | [
"async",
"def",
"websocket_client",
"(",
"hass",
",",
"hass_ws_client",
")",
":",
"return",
"await",
"hass_ws_client",
"(",
"hass",
")"
] | [
9,
0
] | [
11,
37
] | python | en | ['en', 'lb', 'en'] | True |
no_auth_websocket_client | (hass, aiohttp_client) | Websocket connection that requires authentication. | Websocket connection that requires authentication. | async def no_auth_websocket_client(hass, aiohttp_client):
"""Websocket connection that requires authentication."""
assert await async_setup_component(hass, "websocket_api", {})
await hass.async_block_till_done()
client = await aiohttp_client(hass.http.app)
ws = await client.ws_connect(URL)
auth_ok = await ws.receive_json()
assert auth_ok["type"] == TYPE_AUTH_REQUIRED
ws.client = client
yield ws
if not ws.closed:
await ws.close() | [
"async",
"def",
"no_auth_websocket_client",
"(",
"hass",
",",
"aiohttp_client",
")",
":",
"assert",
"await",
"async_setup_component",
"(",
"hass",
",",
"\"websocket_api\"",
",",
"{",
"}",
")",
"await",
"hass",
".",
"async_block_till_done",
"(",
")",
"client",
"=",
"await",
"aiohttp_client",
"(",
"hass",
".",
"http",
".",
"app",
")",
"ws",
"=",
"await",
"client",
".",
"ws_connect",
"(",
"URL",
")",
"auth_ok",
"=",
"await",
"ws",
".",
"receive_json",
"(",
")",
"assert",
"auth_ok",
"[",
"\"type\"",
"]",
"==",
"TYPE_AUTH_REQUIRED",
"ws",
".",
"client",
"=",
"client",
"yield",
"ws",
"if",
"not",
"ws",
".",
"closed",
":",
"await",
"ws",
".",
"close",
"(",
")"
] | [
15,
0
] | [
30,
24
] | python | en | ['en', 'en', 'en'] | True |
setup_platform | (hass, config, add_entities, discovery_info=None) | Set up the Deutsche Bahn Sensor. | Set up the Deutsche Bahn Sensor. | def setup_platform(hass, config, add_entities, discovery_info=None):
"""Set up the Deutsche Bahn Sensor."""
start = config.get(CONF_START)
destination = config[CONF_DESTINATION]
offset = config[CONF_OFFSET]
only_direct = config[CONF_ONLY_DIRECT]
add_entities([DeutscheBahnSensor(start, destination, offset, only_direct)], True) | [
"def",
"setup_platform",
"(",
"hass",
",",
"config",
",",
"add_entities",
",",
"discovery_info",
"=",
"None",
")",
":",
"start",
"=",
"config",
".",
"get",
"(",
"CONF_START",
")",
"destination",
"=",
"config",
"[",
"CONF_DESTINATION",
"]",
"offset",
"=",
"config",
"[",
"CONF_OFFSET",
"]",
"only_direct",
"=",
"config",
"[",
"CONF_ONLY_DIRECT",
"]",
"add_entities",
"(",
"[",
"DeutscheBahnSensor",
"(",
"start",
",",
"destination",
",",
"offset",
",",
"only_direct",
")",
"]",
",",
"True",
")"
] | [
32,
0
] | [
39,
85
] | python | de | ['de', 'nl', 'de'] | True |
DeutscheBahnSensor.__init__ | (self, start, goal, offset, only_direct) | Initialize the sensor. | Initialize the sensor. | def __init__(self, start, goal, offset, only_direct):
"""Initialize the sensor."""
self._name = f"{start} to {goal}"
self.data = SchieneData(start, goal, offset, only_direct)
self._state = None | [
"def",
"__init__",
"(",
"self",
",",
"start",
",",
"goal",
",",
"offset",
",",
"only_direct",
")",
":",
"self",
".",
"_name",
"=",
"f\"{start} to {goal}\"",
"self",
".",
"data",
"=",
"SchieneData",
"(",
"start",
",",
"goal",
",",
"offset",
",",
"only_direct",
")",
"self",
".",
"_state",
"=",
"None"
] | [
45,
4
] | [
49,
26
] | python | en | ['en', 'en', 'en'] | True |
DeutscheBahnSensor.name | (self) | Return the name of the sensor. | Return the name of the sensor. | def name(self):
"""Return the name of the sensor."""
return self._name | [
"def",
"name",
"(",
"self",
")",
":",
"return",
"self",
".",
"_name"
] | [
52,
4
] | [
54,
25
] | python | en | ['en', 'mi', 'en'] | True |
DeutscheBahnSensor.icon | (self) | Return the icon for the frontend. | Return the icon for the frontend. | def icon(self):
"""Return the icon for the frontend."""
return ICON | [
"def",
"icon",
"(",
"self",
")",
":",
"return",
"ICON"
] | [
57,
4
] | [
59,
19
] | python | en | ['en', 'en', 'en'] | True |
DeutscheBahnSensor.state | (self) | Return the departure time of the next train. | Return the departure time of the next train. | def state(self):
"""Return the departure time of the next train."""
return self._state | [
"def",
"state",
"(",
"self",
")",
":",
"return",
"self",
".",
"_state"
] | [
62,
4
] | [
64,
26
] | python | en | ['en', 'en', 'en'] | True |
DeutscheBahnSensor.device_state_attributes | (self) | Return the state attributes. | Return the state attributes. | def device_state_attributes(self):
"""Return the state attributes."""
connections = self.data.connections[0]
if len(self.data.connections) > 1:
connections["next"] = self.data.connections[1]["departure"]
if len(self.data.connections) > 2:
connections["next_on"] = self.data.connections[2]["departure"]
return connections | [
"def",
"device_state_attributes",
"(",
"self",
")",
":",
"connections",
"=",
"self",
".",
"data",
".",
"connections",
"[",
"0",
"]",
"if",
"len",
"(",
"self",
".",
"data",
".",
"connections",
")",
">",
"1",
":",
"connections",
"[",
"\"next\"",
"]",
"=",
"self",
".",
"data",
".",
"connections",
"[",
"1",
"]",
"[",
"\"departure\"",
"]",
"if",
"len",
"(",
"self",
".",
"data",
".",
"connections",
")",
">",
"2",
":",
"connections",
"[",
"\"next_on\"",
"]",
"=",
"self",
".",
"data",
".",
"connections",
"[",
"2",
"]",
"[",
"\"departure\"",
"]",
"return",
"connections"
] | [
67,
4
] | [
74,
26
] | python | en | ['en', 'en', 'en'] | True |
DeutscheBahnSensor.update | (self) | Get the latest delay from bahn.de and updates the state. | Get the latest delay from bahn.de and updates the state. | def update(self):
"""Get the latest delay from bahn.de and updates the state."""
self.data.update()
self._state = self.data.connections[0].get("departure", "Unknown")
if self.data.connections[0].get("delay", 0) != 0:
self._state += f" + {self.data.connections[0]['delay']}" | [
"def",
"update",
"(",
"self",
")",
":",
"self",
".",
"data",
".",
"update",
"(",
")",
"self",
".",
"_state",
"=",
"self",
".",
"data",
".",
"connections",
"[",
"0",
"]",
".",
"get",
"(",
"\"departure\"",
",",
"\"Unknown\"",
")",
"if",
"self",
".",
"data",
".",
"connections",
"[",
"0",
"]",
".",
"get",
"(",
"\"delay\"",
",",
"0",
")",
"!=",
"0",
":",
"self",
".",
"_state",
"+=",
"f\" + {self.data.connections[0]['delay']}\""
] | [
76,
4
] | [
81,
68
] | python | en | ['en', 'en', 'en'] | True |
SchieneData.__init__ | (self, start, goal, offset, only_direct) | Initialize the sensor. | Initialize the sensor. | def __init__(self, start, goal, offset, only_direct):
"""Initialize the sensor."""
self.start = start
self.goal = goal
self.offset = offset
self.only_direct = only_direct
self.schiene = schiene.Schiene()
self.connections = [{}] | [
"def",
"__init__",
"(",
"self",
",",
"start",
",",
"goal",
",",
"offset",
",",
"only_direct",
")",
":",
"self",
".",
"start",
"=",
"start",
"self",
".",
"goal",
"=",
"goal",
"self",
".",
"offset",
"=",
"offset",
"self",
".",
"only_direct",
"=",
"only_direct",
"self",
".",
"schiene",
"=",
"schiene",
".",
"Schiene",
"(",
")",
"self",
".",
"connections",
"=",
"[",
"{",
"}",
"]"
] | [
87,
4
] | [
95,
31
] | python | en | ['en', 'en', 'en'] | True |
SchieneData.update | (self) | Update the connection data. | Update the connection data. | def update(self):
"""Update the connection data."""
self.connections = self.schiene.connections(
self.start,
self.goal,
dt_util.as_local(dt_util.utcnow() + self.offset),
self.only_direct,
)
if not self.connections:
self.connections = [{}]
for con in self.connections:
# Detail info is not useful. Having a more consistent interface
# simplifies usage of template sensors.
if "details" in con:
con.pop("details")
delay = con.get("delay", {"delay_departure": 0, "delay_arrival": 0})
con["delay"] = delay["delay_departure"]
con["delay_arrival"] = delay["delay_arrival"]
con["ontime"] = con.get("ontime", False) | [
"def",
"update",
"(",
"self",
")",
":",
"self",
".",
"connections",
"=",
"self",
".",
"schiene",
".",
"connections",
"(",
"self",
".",
"start",
",",
"self",
".",
"goal",
",",
"dt_util",
".",
"as_local",
"(",
"dt_util",
".",
"utcnow",
"(",
")",
"+",
"self",
".",
"offset",
")",
",",
"self",
".",
"only_direct",
",",
")",
"if",
"not",
"self",
".",
"connections",
":",
"self",
".",
"connections",
"=",
"[",
"{",
"}",
"]",
"for",
"con",
"in",
"self",
".",
"connections",
":",
"# Detail info is not useful. Having a more consistent interface",
"# simplifies usage of template sensors.",
"if",
"\"details\"",
"in",
"con",
":",
"con",
".",
"pop",
"(",
"\"details\"",
")",
"delay",
"=",
"con",
".",
"get",
"(",
"\"delay\"",
",",
"{",
"\"delay_departure\"",
":",
"0",
",",
"\"delay_arrival\"",
":",
"0",
"}",
")",
"con",
"[",
"\"delay\"",
"]",
"=",
"delay",
"[",
"\"delay_departure\"",
"]",
"con",
"[",
"\"delay_arrival\"",
"]",
"=",
"delay",
"[",
"\"delay_arrival\"",
"]",
"con",
"[",
"\"ontime\"",
"]",
"=",
"con",
".",
"get",
"(",
"\"ontime\"",
",",
"False",
")"
] | [
97,
4
] | [
117,
56
] | python | en | ['en', 'en', 'en'] | True |
async_get_device_config | (hass, config_entry) | Initiate the connection and services. | Initiate the connection and services. | async def async_get_device_config(hass, config_entry):
"""Initiate the connection and services."""
# Make a copy of addresses due to edge case where the list of devices could change during status update
# Cannot be done concurrently due to issues with the underlying protocol.
for address in list(devices):
try:
await devices[address].async_status()
except AttributeError:
pass
await devices.async_load(id_devices=1)
for addr in devices:
device = devices[addr]
flags = True
for name in device.operating_flags:
if not device.operating_flags[name].is_loaded:
flags = False
break
if flags:
for name in device.properties:
if not device.properties[name].is_loaded:
flags = False
break
# Cannot be done concurrently due to issues with the underlying protocol.
if not device.aldb.is_loaded or not flags:
await device.async_read_config()
await devices.async_save(workdir=hass.config.config_dir) | [
"async",
"def",
"async_get_device_config",
"(",
"hass",
",",
"config_entry",
")",
":",
"# Make a copy of addresses due to edge case where the list of devices could change during status update",
"# Cannot be done concurrently due to issues with the underlying protocol.",
"for",
"address",
"in",
"list",
"(",
"devices",
")",
":",
"try",
":",
"await",
"devices",
"[",
"address",
"]",
".",
"async_status",
"(",
")",
"except",
"AttributeError",
":",
"pass",
"await",
"devices",
".",
"async_load",
"(",
"id_devices",
"=",
"1",
")",
"for",
"addr",
"in",
"devices",
":",
"device",
"=",
"devices",
"[",
"addr",
"]",
"flags",
"=",
"True",
"for",
"name",
"in",
"device",
".",
"operating_flags",
":",
"if",
"not",
"device",
".",
"operating_flags",
"[",
"name",
"]",
".",
"is_loaded",
":",
"flags",
"=",
"False",
"break",
"if",
"flags",
":",
"for",
"name",
"in",
"device",
".",
"properties",
":",
"if",
"not",
"device",
".",
"properties",
"[",
"name",
"]",
".",
"is_loaded",
":",
"flags",
"=",
"False",
"break",
"# Cannot be done concurrently due to issues with the underlying protocol.",
"if",
"not",
"device",
".",
"aldb",
".",
"is_loaded",
"or",
"not",
"flags",
":",
"await",
"device",
".",
"async_read_config",
"(",
")",
"await",
"devices",
".",
"async_save",
"(",
"workdir",
"=",
"hass",
".",
"config",
".",
"config_dir",
")"
] | [
34,
0
] | [
62,
60
] | python | en | ['en', 'en', 'en'] | True |
close_insteon_connection | (*args) | Close the Insteon connection. | Close the Insteon connection. | async def close_insteon_connection(*args):
"""Close the Insteon connection."""
await async_close() | [
"async",
"def",
"close_insteon_connection",
"(",
"*",
"args",
")",
":",
"await",
"async_close",
"(",
")"
] | [
65,
0
] | [
67,
23
] | python | en | ['en', 'en', 'en'] | True |
async_setup | (hass, config) | Set up the Insteon platform. | Set up the Insteon platform. | async def async_setup(hass, config):
"""Set up the Insteon platform."""
if DOMAIN not in config:
return True
conf = config[DOMAIN]
data, options = convert_yaml_to_config_flow(conf)
if options:
hass.data[DOMAIN] = {}
hass.data[DOMAIN][OPTIONS] = options
# Create a config entry with the connection data
hass.async_create_task(
hass.config_entries.flow.async_init(
DOMAIN, context={"source": SOURCE_IMPORT}, data=data
)
)
return True | [
"async",
"def",
"async_setup",
"(",
"hass",
",",
"config",
")",
":",
"if",
"DOMAIN",
"not",
"in",
"config",
":",
"return",
"True",
"conf",
"=",
"config",
"[",
"DOMAIN",
"]",
"data",
",",
"options",
"=",
"convert_yaml_to_config_flow",
"(",
"conf",
")",
"if",
"options",
":",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"=",
"{",
"}",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"OPTIONS",
"]",
"=",
"options",
"# Create a config entry with the connection data",
"hass",
".",
"async_create_task",
"(",
"hass",
".",
"config_entries",
".",
"flow",
".",
"async_init",
"(",
"DOMAIN",
",",
"context",
"=",
"{",
"\"source\"",
":",
"SOURCE_IMPORT",
"}",
",",
"data",
"=",
"data",
")",
")",
"return",
"True"
] | [
70,
0
] | [
86,
15
] | python | en | ['en', 'da', 'en'] | True |
async_setup_entry | (hass, entry) | Set up an Insteon entry. | Set up an Insteon entry. | async def async_setup_entry(hass, entry):
"""Set up an Insteon entry."""
if not devices.modem:
try:
await async_connect(**entry.data)
except ConnectionError as exception:
_LOGGER.error("Could not connect to Insteon modem")
raise ConfigEntryNotReady from exception
hass.bus.async_listen_once(EVENT_HOMEASSISTANT_STOP, close_insteon_connection)
await devices.async_load(
workdir=hass.config.config_dir, id_devices=0, load_modem_aldb=0
)
# If options existed in YAML and have not already been saved to the config entry
# add them now
if (
not entry.options
and entry.source == SOURCE_IMPORT
and hass.data.get(DOMAIN)
and hass.data[DOMAIN].get(OPTIONS)
):
hass.config_entries.async_update_entry(
entry=entry,
options=hass.data[DOMAIN][OPTIONS],
)
for device_override in entry.options.get(CONF_OVERRIDE, []):
# Override the device default capabilities for a specific address
address = device_override.get("address")
if not devices.get(address):
cat = device_override[CONF_CAT]
subcat = device_override[CONF_SUBCAT]
devices.set_id(address, cat, subcat, 0)
for device in entry.options.get(CONF_X10, []):
housecode = device.get(CONF_HOUSECODE)
unitcode = device.get(CONF_UNITCODE)
x10_type = "on_off"
steps = device.get(CONF_DIM_STEPS, 22)
if device.get(CONF_PLATFORM) == "light":
x10_type = "dimmable"
elif device.get(CONF_PLATFORM) == "binary_sensor":
x10_type = "sensor"
_LOGGER.debug(
"Adding X10 device to Insteon: %s %d %s", housecode, unitcode, x10_type
)
device = devices.add_x10_device(housecode, unitcode, x10_type, steps)
for component in INSTEON_COMPONENTS:
hass.async_create_task(
hass.config_entries.async_forward_entry_setup(entry, component)
)
for address in devices:
device = devices[address]
platforms = get_device_platforms(device)
if ON_OFF_EVENTS in platforms:
add_on_off_event_device(hass, device)
_LOGGER.debug("Insteon device count: %s", len(devices))
register_new_device_callback(hass)
async_register_services(hass)
device_registry = await hass.helpers.device_registry.async_get_registry()
device_registry.async_get_or_create(
config_entry_id=entry.entry_id,
identifiers={(DOMAIN, str(devices.modem.address))},
manufacturer="Smart Home",
name=f"{devices.modem.description} {devices.modem.address}",
model=f"{devices.modem.model} ({devices.modem.cat!r}, 0x{devices.modem.subcat:02x})",
sw_version=f"{devices.modem.firmware:02x} Engine Version: {devices.modem.engine_version}",
)
asyncio.create_task(async_get_device_config(hass, entry))
return True | [
"async",
"def",
"async_setup_entry",
"(",
"hass",
",",
"entry",
")",
":",
"if",
"not",
"devices",
".",
"modem",
":",
"try",
":",
"await",
"async_connect",
"(",
"*",
"*",
"entry",
".",
"data",
")",
"except",
"ConnectionError",
"as",
"exception",
":",
"_LOGGER",
".",
"error",
"(",
"\"Could not connect to Insteon modem\"",
")",
"raise",
"ConfigEntryNotReady",
"from",
"exception",
"hass",
".",
"bus",
".",
"async_listen_once",
"(",
"EVENT_HOMEASSISTANT_STOP",
",",
"close_insteon_connection",
")",
"await",
"devices",
".",
"async_load",
"(",
"workdir",
"=",
"hass",
".",
"config",
".",
"config_dir",
",",
"id_devices",
"=",
"0",
",",
"load_modem_aldb",
"=",
"0",
")",
"# If options existed in YAML and have not already been saved to the config entry",
"# add them now",
"if",
"(",
"not",
"entry",
".",
"options",
"and",
"entry",
".",
"source",
"==",
"SOURCE_IMPORT",
"and",
"hass",
".",
"data",
".",
"get",
"(",
"DOMAIN",
")",
"and",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
".",
"get",
"(",
"OPTIONS",
")",
")",
":",
"hass",
".",
"config_entries",
".",
"async_update_entry",
"(",
"entry",
"=",
"entry",
",",
"options",
"=",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"OPTIONS",
"]",
",",
")",
"for",
"device_override",
"in",
"entry",
".",
"options",
".",
"get",
"(",
"CONF_OVERRIDE",
",",
"[",
"]",
")",
":",
"# Override the device default capabilities for a specific address",
"address",
"=",
"device_override",
".",
"get",
"(",
"\"address\"",
")",
"if",
"not",
"devices",
".",
"get",
"(",
"address",
")",
":",
"cat",
"=",
"device_override",
"[",
"CONF_CAT",
"]",
"subcat",
"=",
"device_override",
"[",
"CONF_SUBCAT",
"]",
"devices",
".",
"set_id",
"(",
"address",
",",
"cat",
",",
"subcat",
",",
"0",
")",
"for",
"device",
"in",
"entry",
".",
"options",
".",
"get",
"(",
"CONF_X10",
",",
"[",
"]",
")",
":",
"housecode",
"=",
"device",
".",
"get",
"(",
"CONF_HOUSECODE",
")",
"unitcode",
"=",
"device",
".",
"get",
"(",
"CONF_UNITCODE",
")",
"x10_type",
"=",
"\"on_off\"",
"steps",
"=",
"device",
".",
"get",
"(",
"CONF_DIM_STEPS",
",",
"22",
")",
"if",
"device",
".",
"get",
"(",
"CONF_PLATFORM",
")",
"==",
"\"light\"",
":",
"x10_type",
"=",
"\"dimmable\"",
"elif",
"device",
".",
"get",
"(",
"CONF_PLATFORM",
")",
"==",
"\"binary_sensor\"",
":",
"x10_type",
"=",
"\"sensor\"",
"_LOGGER",
".",
"debug",
"(",
"\"Adding X10 device to Insteon: %s %d %s\"",
",",
"housecode",
",",
"unitcode",
",",
"x10_type",
")",
"device",
"=",
"devices",
".",
"add_x10_device",
"(",
"housecode",
",",
"unitcode",
",",
"x10_type",
",",
"steps",
")",
"for",
"component",
"in",
"INSTEON_COMPONENTS",
":",
"hass",
".",
"async_create_task",
"(",
"hass",
".",
"config_entries",
".",
"async_forward_entry_setup",
"(",
"entry",
",",
"component",
")",
")",
"for",
"address",
"in",
"devices",
":",
"device",
"=",
"devices",
"[",
"address",
"]",
"platforms",
"=",
"get_device_platforms",
"(",
"device",
")",
"if",
"ON_OFF_EVENTS",
"in",
"platforms",
":",
"add_on_off_event_device",
"(",
"hass",
",",
"device",
")",
"_LOGGER",
".",
"debug",
"(",
"\"Insteon device count: %s\"",
",",
"len",
"(",
"devices",
")",
")",
"register_new_device_callback",
"(",
"hass",
")",
"async_register_services",
"(",
"hass",
")",
"device_registry",
"=",
"await",
"hass",
".",
"helpers",
".",
"device_registry",
".",
"async_get_registry",
"(",
")",
"device_registry",
".",
"async_get_or_create",
"(",
"config_entry_id",
"=",
"entry",
".",
"entry_id",
",",
"identifiers",
"=",
"{",
"(",
"DOMAIN",
",",
"str",
"(",
"devices",
".",
"modem",
".",
"address",
")",
")",
"}",
",",
"manufacturer",
"=",
"\"Smart Home\"",
",",
"name",
"=",
"f\"{devices.modem.description} {devices.modem.address}\"",
",",
"model",
"=",
"f\"{devices.modem.model} ({devices.modem.cat!r}, 0x{devices.modem.subcat:02x})\"",
",",
"sw_version",
"=",
"f\"{devices.modem.firmware:02x} Engine Version: {devices.modem.engine_version}\"",
",",
")",
"asyncio",
".",
"create_task",
"(",
"async_get_device_config",
"(",
"hass",
",",
"entry",
")",
")",
"return",
"True"
] | [
89,
0
] | [
167,
15
] | python | en | ['en', 'en', 'en'] | True |
async_check_ha_config_file | (hass: HomeAssistant) | Load and check if Home Assistant configuration file is valid.
This method is a coroutine.
| Load and check if Home Assistant configuration file is valid. | async def async_check_ha_config_file(hass: HomeAssistant) -> HomeAssistantConfig:
"""Load and check if Home Assistant configuration file is valid.
This method is a coroutine.
"""
result = HomeAssistantConfig()
def _pack_error(
package: str, component: str, config: ConfigType, message: str
) -> None:
"""Handle errors from packages: _log_pkg_error."""
message = f"Package {package} setup failed. Component {component} {message}"
domain = f"homeassistant.packages.{package}.{component}"
pack_config = core_config[CONF_PACKAGES].get(package, config)
result.add_error(message, domain, pack_config)
def _comp_error(ex: Exception, domain: str, config: ConfigType) -> None:
"""Handle errors from components: async_log_exception."""
result.add_error(_format_config_error(ex, domain, config), domain, config)
# Load configuration.yaml
config_path = hass.config.path(YAML_CONFIG_FILE)
try:
if not await hass.async_add_executor_job(os.path.isfile, config_path):
return result.add_error("File configuration.yaml not found.")
config = await hass.async_add_executor_job(load_yaml_config_file, config_path)
except FileNotFoundError:
return result.add_error(f"File not found: {config_path}")
except HomeAssistantError as err:
return result.add_error(f"Error loading {config_path}: {err}")
finally:
yaml_loader.clear_secret_cache()
# Extract and validate core [homeassistant] config
try:
core_config = config.pop(CONF_CORE, {})
core_config = CORE_CONFIG_SCHEMA(core_config)
result[CONF_CORE] = core_config
except vol.Invalid as err:
result.add_error(err, CONF_CORE, core_config)
core_config = {}
# Merge packages
await merge_packages_config(
hass, config, core_config.get(CONF_PACKAGES, {}), _pack_error
)
core_config.pop(CONF_PACKAGES, None)
# Filter out repeating config sections
components = {key.split(" ")[0] for key in config.keys()}
# Process and validate config
for domain in components:
try:
integration = await async_get_integration_with_requirements(hass, domain)
except (RequirementsNotFound, loader.IntegrationNotFound) as ex:
result.add_error(f"Component error: {domain} - {ex}")
continue
try:
component = integration.get_component()
except ImportError as ex:
result.add_error(f"Component error: {domain} - {ex}")
continue
# Check if the integration has a custom config validator
config_validator = None
try:
config_validator = integration.get_platform("config")
except ImportError as err:
# Filter out import error of the config platform.
# If the config platform contains bad imports, make sure
# that still fails.
if err.name != f"{integration.pkg_path}.config":
result.add_error(f"Error importing config platform {domain}: {err}")
continue
if config_validator is not None and hasattr(
config_validator, "async_validate_config"
):
try:
return await config_validator.async_validate_config( # type: ignore
hass, config
)
except (vol.Invalid, HomeAssistantError) as ex:
_comp_error(ex, domain, config)
continue
except Exception: # pylint: disable=broad-except
result.add_error("Unknown error calling %s config validator", domain)
continue
config_schema = getattr(component, "CONFIG_SCHEMA", None)
if config_schema is not None:
try:
config = config_schema(config)
result[domain] = config[domain]
except vol.Invalid as ex:
_comp_error(ex, domain, config)
continue
component_platform_schema = getattr(
component,
"PLATFORM_SCHEMA_BASE",
getattr(component, "PLATFORM_SCHEMA", None),
)
if component_platform_schema is None:
continue
platforms = []
for p_name, p_config in config_per_platform(config, domain):
# Validate component specific platform schema
try:
p_validated = component_platform_schema(p_config)
except vol.Invalid as ex:
_comp_error(ex, domain, config)
continue
# Not all platform components follow same pattern for platforms
# So if p_name is None we are not going to validate platform
# (the automation component is one of them)
if p_name is None:
platforms.append(p_validated)
continue
try:
p_integration = await async_get_integration_with_requirements(
hass, p_name
)
platform = p_integration.get_platform(domain)
except (
loader.IntegrationNotFound,
RequirementsNotFound,
ImportError,
) as ex:
result.add_error(f"Platform error {domain}.{p_name} - {ex}")
continue
# Validate platform specific schema
platform_schema = getattr(platform, "PLATFORM_SCHEMA", None)
if platform_schema is not None:
try:
p_validated = platform_schema(p_validated)
except vol.Invalid as ex:
_comp_error(ex, f"{domain}.{p_name}", p_validated)
continue
platforms.append(p_validated)
# Remove config for current component and add validated config back in.
for filter_comp in extract_domain_configs(config, domain):
del config[filter_comp]
result[domain] = platforms
return result | [
"async",
"def",
"async_check_ha_config_file",
"(",
"hass",
":",
"HomeAssistant",
")",
"->",
"HomeAssistantConfig",
":",
"result",
"=",
"HomeAssistantConfig",
"(",
")",
"def",
"_pack_error",
"(",
"package",
":",
"str",
",",
"component",
":",
"str",
",",
"config",
":",
"ConfigType",
",",
"message",
":",
"str",
")",
"->",
"None",
":",
"\"\"\"Handle errors from packages: _log_pkg_error.\"\"\"",
"message",
"=",
"f\"Package {package} setup failed. Component {component} {message}\"",
"domain",
"=",
"f\"homeassistant.packages.{package}.{component}\"",
"pack_config",
"=",
"core_config",
"[",
"CONF_PACKAGES",
"]",
".",
"get",
"(",
"package",
",",
"config",
")",
"result",
".",
"add_error",
"(",
"message",
",",
"domain",
",",
"pack_config",
")",
"def",
"_comp_error",
"(",
"ex",
":",
"Exception",
",",
"domain",
":",
"str",
",",
"config",
":",
"ConfigType",
")",
"->",
"None",
":",
"\"\"\"Handle errors from components: async_log_exception.\"\"\"",
"result",
".",
"add_error",
"(",
"_format_config_error",
"(",
"ex",
",",
"domain",
",",
"config",
")",
",",
"domain",
",",
"config",
")",
"# Load configuration.yaml",
"config_path",
"=",
"hass",
".",
"config",
".",
"path",
"(",
"YAML_CONFIG_FILE",
")",
"try",
":",
"if",
"not",
"await",
"hass",
".",
"async_add_executor_job",
"(",
"os",
".",
"path",
".",
"isfile",
",",
"config_path",
")",
":",
"return",
"result",
".",
"add_error",
"(",
"\"File configuration.yaml not found.\"",
")",
"config",
"=",
"await",
"hass",
".",
"async_add_executor_job",
"(",
"load_yaml_config_file",
",",
"config_path",
")",
"except",
"FileNotFoundError",
":",
"return",
"result",
".",
"add_error",
"(",
"f\"File not found: {config_path}\"",
")",
"except",
"HomeAssistantError",
"as",
"err",
":",
"return",
"result",
".",
"add_error",
"(",
"f\"Error loading {config_path}: {err}\"",
")",
"finally",
":",
"yaml_loader",
".",
"clear_secret_cache",
"(",
")",
"# Extract and validate core [homeassistant] config",
"try",
":",
"core_config",
"=",
"config",
".",
"pop",
"(",
"CONF_CORE",
",",
"{",
"}",
")",
"core_config",
"=",
"CORE_CONFIG_SCHEMA",
"(",
"core_config",
")",
"result",
"[",
"CONF_CORE",
"]",
"=",
"core_config",
"except",
"vol",
".",
"Invalid",
"as",
"err",
":",
"result",
".",
"add_error",
"(",
"err",
",",
"CONF_CORE",
",",
"core_config",
")",
"core_config",
"=",
"{",
"}",
"# Merge packages",
"await",
"merge_packages_config",
"(",
"hass",
",",
"config",
",",
"core_config",
".",
"get",
"(",
"CONF_PACKAGES",
",",
"{",
"}",
")",
",",
"_pack_error",
")",
"core_config",
".",
"pop",
"(",
"CONF_PACKAGES",
",",
"None",
")",
"# Filter out repeating config sections",
"components",
"=",
"{",
"key",
".",
"split",
"(",
"\" \"",
")",
"[",
"0",
"]",
"for",
"key",
"in",
"config",
".",
"keys",
"(",
")",
"}",
"# Process and validate config",
"for",
"domain",
"in",
"components",
":",
"try",
":",
"integration",
"=",
"await",
"async_get_integration_with_requirements",
"(",
"hass",
",",
"domain",
")",
"except",
"(",
"RequirementsNotFound",
",",
"loader",
".",
"IntegrationNotFound",
")",
"as",
"ex",
":",
"result",
".",
"add_error",
"(",
"f\"Component error: {domain} - {ex}\"",
")",
"continue",
"try",
":",
"component",
"=",
"integration",
".",
"get_component",
"(",
")",
"except",
"ImportError",
"as",
"ex",
":",
"result",
".",
"add_error",
"(",
"f\"Component error: {domain} - {ex}\"",
")",
"continue",
"# Check if the integration has a custom config validator",
"config_validator",
"=",
"None",
"try",
":",
"config_validator",
"=",
"integration",
".",
"get_platform",
"(",
"\"config\"",
")",
"except",
"ImportError",
"as",
"err",
":",
"# Filter out import error of the config platform.",
"# If the config platform contains bad imports, make sure",
"# that still fails.",
"if",
"err",
".",
"name",
"!=",
"f\"{integration.pkg_path}.config\"",
":",
"result",
".",
"add_error",
"(",
"f\"Error importing config platform {domain}: {err}\"",
")",
"continue",
"if",
"config_validator",
"is",
"not",
"None",
"and",
"hasattr",
"(",
"config_validator",
",",
"\"async_validate_config\"",
")",
":",
"try",
":",
"return",
"await",
"config_validator",
".",
"async_validate_config",
"(",
"# type: ignore",
"hass",
",",
"config",
")",
"except",
"(",
"vol",
".",
"Invalid",
",",
"HomeAssistantError",
")",
"as",
"ex",
":",
"_comp_error",
"(",
"ex",
",",
"domain",
",",
"config",
")",
"continue",
"except",
"Exception",
":",
"# pylint: disable=broad-except",
"result",
".",
"add_error",
"(",
"\"Unknown error calling %s config validator\"",
",",
"domain",
")",
"continue",
"config_schema",
"=",
"getattr",
"(",
"component",
",",
"\"CONFIG_SCHEMA\"",
",",
"None",
")",
"if",
"config_schema",
"is",
"not",
"None",
":",
"try",
":",
"config",
"=",
"config_schema",
"(",
"config",
")",
"result",
"[",
"domain",
"]",
"=",
"config",
"[",
"domain",
"]",
"except",
"vol",
".",
"Invalid",
"as",
"ex",
":",
"_comp_error",
"(",
"ex",
",",
"domain",
",",
"config",
")",
"continue",
"component_platform_schema",
"=",
"getattr",
"(",
"component",
",",
"\"PLATFORM_SCHEMA_BASE\"",
",",
"getattr",
"(",
"component",
",",
"\"PLATFORM_SCHEMA\"",
",",
"None",
")",
",",
")",
"if",
"component_platform_schema",
"is",
"None",
":",
"continue",
"platforms",
"=",
"[",
"]",
"for",
"p_name",
",",
"p_config",
"in",
"config_per_platform",
"(",
"config",
",",
"domain",
")",
":",
"# Validate component specific platform schema",
"try",
":",
"p_validated",
"=",
"component_platform_schema",
"(",
"p_config",
")",
"except",
"vol",
".",
"Invalid",
"as",
"ex",
":",
"_comp_error",
"(",
"ex",
",",
"domain",
",",
"config",
")",
"continue",
"# Not all platform components follow same pattern for platforms",
"# So if p_name is None we are not going to validate platform",
"# (the automation component is one of them)",
"if",
"p_name",
"is",
"None",
":",
"platforms",
".",
"append",
"(",
"p_validated",
")",
"continue",
"try",
":",
"p_integration",
"=",
"await",
"async_get_integration_with_requirements",
"(",
"hass",
",",
"p_name",
")",
"platform",
"=",
"p_integration",
".",
"get_platform",
"(",
"domain",
")",
"except",
"(",
"loader",
".",
"IntegrationNotFound",
",",
"RequirementsNotFound",
",",
"ImportError",
",",
")",
"as",
"ex",
":",
"result",
".",
"add_error",
"(",
"f\"Platform error {domain}.{p_name} - {ex}\"",
")",
"continue",
"# Validate platform specific schema",
"platform_schema",
"=",
"getattr",
"(",
"platform",
",",
"\"PLATFORM_SCHEMA\"",
",",
"None",
")",
"if",
"platform_schema",
"is",
"not",
"None",
":",
"try",
":",
"p_validated",
"=",
"platform_schema",
"(",
"p_validated",
")",
"except",
"vol",
".",
"Invalid",
"as",
"ex",
":",
"_comp_error",
"(",
"ex",
",",
"f\"{domain}.{p_name}\"",
",",
"p_validated",
")",
"continue",
"platforms",
".",
"append",
"(",
"p_validated",
")",
"# Remove config for current component and add validated config back in.",
"for",
"filter_comp",
"in",
"extract_domain_configs",
"(",
"config",
",",
"domain",
")",
":",
"del",
"config",
"[",
"filter_comp",
"]",
"result",
"[",
"domain",
"]",
"=",
"platforms",
"return",
"result"
] | [
60,
0
] | [
214,
17
] | python | en | ['en', 'en', 'en'] | True |
empty_value | (value: Any) | Test if the user has the default config value from adding "zone:". | Test if the user has the default config value from adding "zone:". | def empty_value(value: Any) -> Any:
"""Test if the user has the default config value from adding "zone:"."""
if isinstance(value, dict) and len(value) == 0:
return []
raise vol.Invalid("Not a default value") | [
"def",
"empty_value",
"(",
"value",
":",
"Any",
")",
"->",
"Any",
":",
"if",
"isinstance",
"(",
"value",
",",
"dict",
")",
"and",
"len",
"(",
"value",
")",
"==",
"0",
":",
"return",
"[",
"]",
"raise",
"vol",
".",
"Invalid",
"(",
"\"Not a default value\"",
")"
] | [
67,
0
] | [
72,
44
] | python | en | ['en', 'en', 'en'] | True |
async_active_zone | (
hass: HomeAssistant, latitude: float, longitude: float, radius: int = 0
) | Find the active zone for given latitude, longitude.
This method must be run in the event loop.
| Find the active zone for given latitude, longitude. | def async_active_zone(
hass: HomeAssistant, latitude: float, longitude: float, radius: int = 0
) -> Optional[State]:
"""Find the active zone for given latitude, longitude.
This method must be run in the event loop.
"""
# Sort entity IDs so that we are deterministic if equal distance to 2 zones
zones = (
cast(State, hass.states.get(entity_id))
for entity_id in sorted(hass.states.async_entity_ids(DOMAIN))
)
min_dist = None
closest = None
for zone in zones:
if zone.state == STATE_UNAVAILABLE or zone.attributes.get(ATTR_PASSIVE):
continue
zone_dist = distance(
latitude,
longitude,
zone.attributes[ATTR_LATITUDE],
zone.attributes[ATTR_LONGITUDE],
)
if zone_dist is None:
continue
within_zone = zone_dist - radius < zone.attributes[ATTR_RADIUS]
closer_zone = closest is None or zone_dist < min_dist # type: ignore
smaller_zone = (
zone_dist == min_dist
and zone.attributes[ATTR_RADIUS]
< cast(State, closest).attributes[ATTR_RADIUS]
)
if within_zone and (closer_zone or smaller_zone):
min_dist = zone_dist
closest = zone
return closest | [
"def",
"async_active_zone",
"(",
"hass",
":",
"HomeAssistant",
",",
"latitude",
":",
"float",
",",
"longitude",
":",
"float",
",",
"radius",
":",
"int",
"=",
"0",
")",
"->",
"Optional",
"[",
"State",
"]",
":",
"# Sort entity IDs so that we are deterministic if equal distance to 2 zones",
"zones",
"=",
"(",
"cast",
"(",
"State",
",",
"hass",
".",
"states",
".",
"get",
"(",
"entity_id",
")",
")",
"for",
"entity_id",
"in",
"sorted",
"(",
"hass",
".",
"states",
".",
"async_entity_ids",
"(",
"DOMAIN",
")",
")",
")",
"min_dist",
"=",
"None",
"closest",
"=",
"None",
"for",
"zone",
"in",
"zones",
":",
"if",
"zone",
".",
"state",
"==",
"STATE_UNAVAILABLE",
"or",
"zone",
".",
"attributes",
".",
"get",
"(",
"ATTR_PASSIVE",
")",
":",
"continue",
"zone_dist",
"=",
"distance",
"(",
"latitude",
",",
"longitude",
",",
"zone",
".",
"attributes",
"[",
"ATTR_LATITUDE",
"]",
",",
"zone",
".",
"attributes",
"[",
"ATTR_LONGITUDE",
"]",
",",
")",
"if",
"zone_dist",
"is",
"None",
":",
"continue",
"within_zone",
"=",
"zone_dist",
"-",
"radius",
"<",
"zone",
".",
"attributes",
"[",
"ATTR_RADIUS",
"]",
"closer_zone",
"=",
"closest",
"is",
"None",
"or",
"zone_dist",
"<",
"min_dist",
"# type: ignore",
"smaller_zone",
"=",
"(",
"zone_dist",
"==",
"min_dist",
"and",
"zone",
".",
"attributes",
"[",
"ATTR_RADIUS",
"]",
"<",
"cast",
"(",
"State",
",",
"closest",
")",
".",
"attributes",
"[",
"ATTR_RADIUS",
"]",
")",
"if",
"within_zone",
"and",
"(",
"closer_zone",
"or",
"smaller_zone",
")",
":",
"min_dist",
"=",
"zone_dist",
"closest",
"=",
"zone",
"return",
"closest"
] | [
91,
0
] | [
133,
18
] | python | en | ['en', 'en', 'en'] | True |
in_zone | (zone: State, latitude: float, longitude: float, radius: float = 0) | Test if given latitude, longitude is in given zone.
Async friendly.
| Test if given latitude, longitude is in given zone. | def in_zone(zone: State, latitude: float, longitude: float, radius: float = 0) -> bool:
"""Test if given latitude, longitude is in given zone.
Async friendly.
"""
if zone.state == STATE_UNAVAILABLE:
return False
zone_dist = distance(
latitude,
longitude,
zone.attributes[ATTR_LATITUDE],
zone.attributes[ATTR_LONGITUDE],
)
if zone_dist is None or zone.attributes[ATTR_RADIUS] is None:
return False
return zone_dist - radius < cast(float, zone.attributes[ATTR_RADIUS]) | [
"def",
"in_zone",
"(",
"zone",
":",
"State",
",",
"latitude",
":",
"float",
",",
"longitude",
":",
"float",
",",
"radius",
":",
"float",
"=",
"0",
")",
"->",
"bool",
":",
"if",
"zone",
".",
"state",
"==",
"STATE_UNAVAILABLE",
":",
"return",
"False",
"zone_dist",
"=",
"distance",
"(",
"latitude",
",",
"longitude",
",",
"zone",
".",
"attributes",
"[",
"ATTR_LATITUDE",
"]",
",",
"zone",
".",
"attributes",
"[",
"ATTR_LONGITUDE",
"]",
",",
")",
"if",
"zone_dist",
"is",
"None",
"or",
"zone",
".",
"attributes",
"[",
"ATTR_RADIUS",
"]",
"is",
"None",
":",
"return",
"False",
"return",
"zone_dist",
"-",
"radius",
"<",
"cast",
"(",
"float",
",",
"zone",
".",
"attributes",
"[",
"ATTR_RADIUS",
"]",
")"
] | [
136,
0
] | [
153,
73
] | python | en | ['nl', 'en', 'en'] | True |
async_setup | (hass: HomeAssistant, config: Dict) | Set up configured zones as well as Home Assistant zone if necessary. | Set up configured zones as well as Home Assistant zone if necessary. | async def async_setup(hass: HomeAssistant, config: Dict) -> bool:
"""Set up configured zones as well as Home Assistant zone if necessary."""
component = entity_component.EntityComponent(_LOGGER, DOMAIN, hass)
id_manager = collection.IDManager()
yaml_collection = collection.IDLessCollection(
logging.getLogger(f"{__name__}.yaml_collection"), id_manager
)
collection.attach_entity_component_collection(
component, yaml_collection, lambda conf: Zone(conf, False)
)
storage_collection = ZoneStorageCollection(
storage.Store(hass, STORAGE_VERSION, STORAGE_KEY),
logging.getLogger(f"{__name__}.storage_collection"),
id_manager,
)
collection.attach_entity_component_collection(
component, storage_collection, lambda conf: Zone(conf, True)
)
if config[DOMAIN]:
await yaml_collection.async_load(config[DOMAIN])
await storage_collection.async_load()
collection.StorageCollectionWebsocket(
storage_collection, DOMAIN, DOMAIN, CREATE_FIELDS, UPDATE_FIELDS
).async_setup(hass)
async def _collection_changed(change_type: str, item_id: str, config: Dict) -> None:
"""Handle a collection change: clean up entity registry on removals."""
if change_type != collection.CHANGE_REMOVED:
return
ent_reg = await entity_registry.async_get_registry(hass)
ent_reg.async_remove(
cast(str, ent_reg.async_get_entity_id(DOMAIN, DOMAIN, item_id))
)
storage_collection.async_add_listener(_collection_changed)
async def reload_service_handler(service_call: ServiceCall) -> None:
"""Remove all zones and load new ones from config."""
conf = await component.async_prepare_reload(skip_reset=True)
if conf is None:
return
await yaml_collection.async_load(conf[DOMAIN])
service.async_register_admin_service(
hass,
DOMAIN,
SERVICE_RELOAD,
reload_service_handler,
schema=RELOAD_SERVICE_SCHEMA,
)
if component.get_entity("zone.home"):
return True
home_zone = Zone(
_home_conf(hass),
True,
)
home_zone.entity_id = ENTITY_ID_HOME
await component.async_add_entities([home_zone])
async def core_config_updated(_: Event) -> None:
"""Handle core config updated."""
await home_zone.async_update_config(_home_conf(hass))
hass.bus.async_listen(EVENT_CORE_CONFIG_UPDATE, core_config_updated)
hass.data[DOMAIN] = storage_collection
return True | [
"async",
"def",
"async_setup",
"(",
"hass",
":",
"HomeAssistant",
",",
"config",
":",
"Dict",
")",
"->",
"bool",
":",
"component",
"=",
"entity_component",
".",
"EntityComponent",
"(",
"_LOGGER",
",",
"DOMAIN",
",",
"hass",
")",
"id_manager",
"=",
"collection",
".",
"IDManager",
"(",
")",
"yaml_collection",
"=",
"collection",
".",
"IDLessCollection",
"(",
"logging",
".",
"getLogger",
"(",
"f\"{__name__}.yaml_collection\"",
")",
",",
"id_manager",
")",
"collection",
".",
"attach_entity_component_collection",
"(",
"component",
",",
"yaml_collection",
",",
"lambda",
"conf",
":",
"Zone",
"(",
"conf",
",",
"False",
")",
")",
"storage_collection",
"=",
"ZoneStorageCollection",
"(",
"storage",
".",
"Store",
"(",
"hass",
",",
"STORAGE_VERSION",
",",
"STORAGE_KEY",
")",
",",
"logging",
".",
"getLogger",
"(",
"f\"{__name__}.storage_collection\"",
")",
",",
"id_manager",
",",
")",
"collection",
".",
"attach_entity_component_collection",
"(",
"component",
",",
"storage_collection",
",",
"lambda",
"conf",
":",
"Zone",
"(",
"conf",
",",
"True",
")",
")",
"if",
"config",
"[",
"DOMAIN",
"]",
":",
"await",
"yaml_collection",
".",
"async_load",
"(",
"config",
"[",
"DOMAIN",
"]",
")",
"await",
"storage_collection",
".",
"async_load",
"(",
")",
"collection",
".",
"StorageCollectionWebsocket",
"(",
"storage_collection",
",",
"DOMAIN",
",",
"DOMAIN",
",",
"CREATE_FIELDS",
",",
"UPDATE_FIELDS",
")",
".",
"async_setup",
"(",
"hass",
")",
"async",
"def",
"_collection_changed",
"(",
"change_type",
":",
"str",
",",
"item_id",
":",
"str",
",",
"config",
":",
"Dict",
")",
"->",
"None",
":",
"\"\"\"Handle a collection change: clean up entity registry on removals.\"\"\"",
"if",
"change_type",
"!=",
"collection",
".",
"CHANGE_REMOVED",
":",
"return",
"ent_reg",
"=",
"await",
"entity_registry",
".",
"async_get_registry",
"(",
"hass",
")",
"ent_reg",
".",
"async_remove",
"(",
"cast",
"(",
"str",
",",
"ent_reg",
".",
"async_get_entity_id",
"(",
"DOMAIN",
",",
"DOMAIN",
",",
"item_id",
")",
")",
")",
"storage_collection",
".",
"async_add_listener",
"(",
"_collection_changed",
")",
"async",
"def",
"reload_service_handler",
"(",
"service_call",
":",
"ServiceCall",
")",
"->",
"None",
":",
"\"\"\"Remove all zones and load new ones from config.\"\"\"",
"conf",
"=",
"await",
"component",
".",
"async_prepare_reload",
"(",
"skip_reset",
"=",
"True",
")",
"if",
"conf",
"is",
"None",
":",
"return",
"await",
"yaml_collection",
".",
"async_load",
"(",
"conf",
"[",
"DOMAIN",
"]",
")",
"service",
".",
"async_register_admin_service",
"(",
"hass",
",",
"DOMAIN",
",",
"SERVICE_RELOAD",
",",
"reload_service_handler",
",",
"schema",
"=",
"RELOAD_SERVICE_SCHEMA",
",",
")",
"if",
"component",
".",
"get_entity",
"(",
"\"zone.home\"",
")",
":",
"return",
"True",
"home_zone",
"=",
"Zone",
"(",
"_home_conf",
"(",
"hass",
")",
",",
"True",
",",
")",
"home_zone",
".",
"entity_id",
"=",
"ENTITY_ID_HOME",
"await",
"component",
".",
"async_add_entities",
"(",
"[",
"home_zone",
"]",
")",
"async",
"def",
"core_config_updated",
"(",
"_",
":",
"Event",
")",
"->",
"None",
":",
"\"\"\"Handle core config updated.\"\"\"",
"await",
"home_zone",
".",
"async_update_config",
"(",
"_home_conf",
"(",
"hass",
")",
")",
"hass",
".",
"bus",
".",
"async_listen",
"(",
"EVENT_CORE_CONFIG_UPDATE",
",",
"core_config_updated",
")",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"=",
"storage_collection",
"return",
"True"
] | [
177,
0
] | [
252,
15
] | python | en | ['en', 'en', 'en'] | True |
_home_conf | (hass: HomeAssistant) | Return the home zone config. | Return the home zone config. | def _home_conf(hass: HomeAssistant) -> Dict:
"""Return the home zone config."""
return {
CONF_NAME: hass.config.location_name,
CONF_LATITUDE: hass.config.latitude,
CONF_LONGITUDE: hass.config.longitude,
CONF_RADIUS: DEFAULT_RADIUS,
CONF_ICON: ICON_HOME,
CONF_PASSIVE: False,
} | [
"def",
"_home_conf",
"(",
"hass",
":",
"HomeAssistant",
")",
"->",
"Dict",
":",
"return",
"{",
"CONF_NAME",
":",
"hass",
".",
"config",
".",
"location_name",
",",
"CONF_LATITUDE",
":",
"hass",
".",
"config",
".",
"latitude",
",",
"CONF_LONGITUDE",
":",
"hass",
".",
"config",
".",
"longitude",
",",
"CONF_RADIUS",
":",
"DEFAULT_RADIUS",
",",
"CONF_ICON",
":",
"ICON_HOME",
",",
"CONF_PASSIVE",
":",
"False",
",",
"}"
] | [
256,
0
] | [
265,
5
] | python | en | ['en', 'en', 'en'] | True |
async_setup_entry | (
hass: HomeAssistant, config_entry: config_entries.ConfigEntry
) | Set up zone as config entry. | Set up zone as config entry. | async def async_setup_entry(
hass: HomeAssistant, config_entry: config_entries.ConfigEntry
) -> bool:
"""Set up zone as config entry."""
storage_collection = cast(ZoneStorageCollection, hass.data[DOMAIN])
data = dict(config_entry.data)
data.setdefault(CONF_PASSIVE, DEFAULT_PASSIVE)
data.setdefault(CONF_RADIUS, DEFAULT_RADIUS)
await storage_collection.async_create_item(data)
hass.async_create_task(hass.config_entries.async_remove(config_entry.entry_id))
return True | [
"async",
"def",
"async_setup_entry",
"(",
"hass",
":",
"HomeAssistant",
",",
"config_entry",
":",
"config_entries",
".",
"ConfigEntry",
")",
"->",
"bool",
":",
"storage_collection",
"=",
"cast",
"(",
"ZoneStorageCollection",
",",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
")",
"data",
"=",
"dict",
"(",
"config_entry",
".",
"data",
")",
"data",
".",
"setdefault",
"(",
"CONF_PASSIVE",
",",
"DEFAULT_PASSIVE",
")",
"data",
".",
"setdefault",
"(",
"CONF_RADIUS",
",",
"DEFAULT_RADIUS",
")",
"await",
"storage_collection",
".",
"async_create_item",
"(",
"data",
")",
"hass",
".",
"async_create_task",
"(",
"hass",
".",
"config_entries",
".",
"async_remove",
"(",
"config_entry",
".",
"entry_id",
")",
")",
"return",
"True"
] | [
268,
0
] | [
282,
15
] | python | en | ['en', 'en', 'en'] | True |
async_unload_entry | (
hass: HomeAssistant, config_entry: config_entries.ConfigEntry
) | Will be called once we remove it. | Will be called once we remove it. | async def async_unload_entry(
hass: HomeAssistant, config_entry: config_entries.ConfigEntry
) -> bool:
"""Will be called once we remove it."""
return True | [
"async",
"def",
"async_unload_entry",
"(",
"hass",
":",
"HomeAssistant",
",",
"config_entry",
":",
"config_entries",
".",
"ConfigEntry",
")",
"->",
"bool",
":",
"return",
"True"
] | [
285,
0
] | [
289,
15
] | python | en | ['en', 'en', 'en'] | True |
ZoneStorageCollection._process_create_data | (self, data: Dict) | Validate the config is valid. | Validate the config is valid. | async def _process_create_data(self, data: Dict) -> Dict:
"""Validate the config is valid."""
return cast(Dict, self.CREATE_SCHEMA(data)) | [
"async",
"def",
"_process_create_data",
"(",
"self",
",",
"data",
":",
"Dict",
")",
"->",
"Dict",
":",
"return",
"cast",
"(",
"Dict",
",",
"self",
".",
"CREATE_SCHEMA",
"(",
"data",
")",
")"
] | [
162,
4
] | [
164,
51
] | python | en | ['en', 'en', 'en'] | True |
ZoneStorageCollection._get_suggested_id | (self, info: Dict) | Suggest an ID based on the config. | Suggest an ID based on the config. | def _get_suggested_id(self, info: Dict) -> str:
"""Suggest an ID based on the config."""
return cast(str, info[CONF_NAME]) | [
"def",
"_get_suggested_id",
"(",
"self",
",",
"info",
":",
"Dict",
")",
"->",
"str",
":",
"return",
"cast",
"(",
"str",
",",
"info",
"[",
"CONF_NAME",
"]",
")"
] | [
167,
4
] | [
169,
41
] | python | en | ['en', 'en', 'en'] | True |
ZoneStorageCollection._update_data | (self, data: dict, update_data: Dict) | Return a new updated data object. | Return a new updated data object. | async def _update_data(self, data: dict, update_data: Dict) -> Dict:
"""Return a new updated data object."""
update_data = self.UPDATE_SCHEMA(update_data)
return {**data, **update_data} | [
"async",
"def",
"_update_data",
"(",
"self",
",",
"data",
":",
"dict",
",",
"update_data",
":",
"Dict",
")",
"->",
"Dict",
":",
"update_data",
"=",
"self",
".",
"UPDATE_SCHEMA",
"(",
"update_data",
")",
"return",
"{",
"*",
"*",
"data",
",",
"*",
"*",
"update_data",
"}"
] | [
171,
4
] | [
174,
38
] | python | en | ['en', 'en', 'en'] | True |
Zone.__init__ | (self, config: Dict, editable: bool) | Initialize the zone. | Initialize the zone. | def __init__(self, config: Dict, editable: bool):
"""Initialize the zone."""
self._config = config
self._editable = editable
self._attrs: Optional[Dict] = None
self._generate_attrs() | [
"def",
"__init__",
"(",
"self",
",",
"config",
":",
"Dict",
",",
"editable",
":",
"bool",
")",
":",
"self",
".",
"_config",
"=",
"config",
"self",
".",
"_editable",
"=",
"editable",
"self",
".",
"_attrs",
":",
"Optional",
"[",
"Dict",
"]",
"=",
"None",
"self",
".",
"_generate_attrs",
"(",
")"
] | [
295,
4
] | [
300,
30
] | python | en | ['en', 'en', 'en'] | True |
Zone.state | (self) | Return the state property really does nothing for a zone. | Return the state property really does nothing for a zone. | def state(self) -> str:
"""Return the state property really does nothing for a zone."""
return "zoning" | [
"def",
"state",
"(",
"self",
")",
"->",
"str",
":",
"return",
"\"zoning\""
] | [
303,
4
] | [
305,
23
] | python | en | ['en', 'en', 'en'] | True |
Zone.name | (self) | Return name. | Return name. | def name(self) -> str:
"""Return name."""
return cast(str, self._config[CONF_NAME]) | [
"def",
"name",
"(",
"self",
")",
"->",
"str",
":",
"return",
"cast",
"(",
"str",
",",
"self",
".",
"_config",
"[",
"CONF_NAME",
"]",
")"
] | [
308,
4
] | [
310,
49
] | python | en | ['en', 'ig', 'en'] | False |
Zone.unique_id | (self) | Return unique ID. | Return unique ID. | def unique_id(self) -> Optional[str]:
"""Return unique ID."""
return self._config.get(CONF_ID) | [
"def",
"unique_id",
"(",
"self",
")",
"->",
"Optional",
"[",
"str",
"]",
":",
"return",
"self",
".",
"_config",
".",
"get",
"(",
"CONF_ID",
")"
] | [
313,
4
] | [
315,
40
] | python | en | ['fr', 'la', 'en'] | False |
Zone.icon | (self) | Return the icon if any. | Return the icon if any. | def icon(self) -> Optional[str]:
"""Return the icon if any."""
return self._config.get(CONF_ICON) | [
"def",
"icon",
"(",
"self",
")",
"->",
"Optional",
"[",
"str",
"]",
":",
"return",
"self",
".",
"_config",
".",
"get",
"(",
"CONF_ICON",
")"
] | [
318,
4
] | [
320,
42
] | python | en | ['en', 'en', 'en'] | True |
Zone.state_attributes | (self) | Return the state attributes of the zone. | Return the state attributes of the zone. | def state_attributes(self) -> Optional[Dict]:
"""Return the state attributes of the zone."""
return self._attrs | [
"def",
"state_attributes",
"(",
"self",
")",
"->",
"Optional",
"[",
"Dict",
"]",
":",
"return",
"self",
".",
"_attrs"
] | [
323,
4
] | [
325,
26
] | python | en | ['en', 'en', 'en'] | True |
Zone.should_poll | (self) | Zone does not poll. | Zone does not poll. | def should_poll(self) -> bool:
"""Zone does not poll."""
return False | [
"def",
"should_poll",
"(",
"self",
")",
"->",
"bool",
":",
"return",
"False"
] | [
328,
4
] | [
330,
20
] | python | en | ['it', 'en', 'en'] | True |
Zone.async_update_config | (self, config: Dict) | Handle when the config is updated. | Handle when the config is updated. | async def async_update_config(self, config: Dict) -> None:
"""Handle when the config is updated."""
if self._config == config:
return
self._config = config
self._generate_attrs()
self.async_write_ha_state() | [
"async",
"def",
"async_update_config",
"(",
"self",
",",
"config",
":",
"Dict",
")",
"->",
"None",
":",
"if",
"self",
".",
"_config",
"==",
"config",
":",
"return",
"self",
".",
"_config",
"=",
"config",
"self",
".",
"_generate_attrs",
"(",
")",
"self",
".",
"async_write_ha_state",
"(",
")"
] | [
332,
4
] | [
338,
35
] | python | en | ['en', 'en', 'en'] | True |
Zone._generate_attrs | (self) | Generate new attrs based on config. | Generate new attrs based on config. | def _generate_attrs(self) -> None:
"""Generate new attrs based on config."""
self._attrs = {
ATTR_LATITUDE: self._config[CONF_LATITUDE],
ATTR_LONGITUDE: self._config[CONF_LONGITUDE],
ATTR_RADIUS: self._config[CONF_RADIUS],
ATTR_PASSIVE: self._config[CONF_PASSIVE],
ATTR_EDITABLE: self._editable,
} | [
"def",
"_generate_attrs",
"(",
"self",
")",
"->",
"None",
":",
"self",
".",
"_attrs",
"=",
"{",
"ATTR_LATITUDE",
":",
"self",
".",
"_config",
"[",
"CONF_LATITUDE",
"]",
",",
"ATTR_LONGITUDE",
":",
"self",
".",
"_config",
"[",
"CONF_LONGITUDE",
"]",
",",
"ATTR_RADIUS",
":",
"self",
".",
"_config",
"[",
"CONF_RADIUS",
"]",
",",
"ATTR_PASSIVE",
":",
"self",
".",
"_config",
"[",
"CONF_PASSIVE",
"]",
",",
"ATTR_EDITABLE",
":",
"self",
".",
"_editable",
",",
"}"
] | [
341,
4
] | [
349,
9
] | python | en | ['en', 'en', 'en'] | True |
Compressor.__init__ | (self, model, config_list, optimizer=None) |
Record necessary info in class members
Parameters
----------
model : pytorch model
the model user wants to compress
config_list : list
the configurations that users specify for compression
optimizer: pytorch optimizer
optimizer used to train the model
|
Record necessary info in class members | def __init__(self, model, config_list, optimizer=None):
"""
Record necessary info in class members
Parameters
----------
model : pytorch model
the model user wants to compress
config_list : list
the configurations that users specify for compression
optimizer: pytorch optimizer
optimizer used to train the model
"""
assert isinstance(model, torch.nn.Module)
self.validate_config(model, config_list)
self.bound_model = model
self.config_list = config_list
self.optimizer = optimizer
self.modules_to_compress = None
self.modules_wrapper = []
self.is_wrapped = False
self._fwd_hook_handles = {}
self._fwd_hook_id = 0
self.reset()
if not self.modules_wrapper:
_logger.warning('Nothing is configured to compress, please check your model and config_list') | [
"def",
"__init__",
"(",
"self",
",",
"model",
",",
"config_list",
",",
"optimizer",
"=",
"None",
")",
":",
"assert",
"isinstance",
"(",
"model",
",",
"torch",
".",
"nn",
".",
"Module",
")",
"self",
".",
"validate_config",
"(",
"model",
",",
"config_list",
")",
"self",
".",
"bound_model",
"=",
"model",
"self",
".",
"config_list",
"=",
"config_list",
"self",
".",
"optimizer",
"=",
"optimizer",
"self",
".",
"modules_to_compress",
"=",
"None",
"self",
".",
"modules_wrapper",
"=",
"[",
"]",
"self",
".",
"is_wrapped",
"=",
"False",
"self",
".",
"_fwd_hook_handles",
"=",
"{",
"}",
"self",
".",
"_fwd_hook_id",
"=",
"0",
"self",
".",
"reset",
"(",
")",
"if",
"not",
"self",
".",
"modules_wrapper",
":",
"_logger",
".",
"warning",
"(",
"'Nothing is configured to compress, please check your model and config_list'",
")"
] | [
27,
4
] | [
57,
105
] | python | en | ['en', 'error', 'th'] | False |
Compressor.validate_config | (self, model, config_list) |
subclass can optionally implement this method to check if config_list if valid
|
subclass can optionally implement this method to check if config_list if valid
| def validate_config(self, model, config_list):
"""
subclass can optionally implement this method to check if config_list if valid
"""
pass | [
"def",
"validate_config",
"(",
"self",
",",
"model",
",",
"config_list",
")",
":",
"pass"
] | [
59,
4
] | [
63,
12
] | python | en | ['en', 'error', 'th'] | False |
Compressor.reset | (self, checkpoint=None) |
reset model state dict and model wrapper
|
reset model state dict and model wrapper
| def reset(self, checkpoint=None):
"""
reset model state dict and model wrapper
"""
self._unwrap_model()
if checkpoint is not None:
self.bound_model.load_state_dict(checkpoint)
self.modules_to_compress = None
self.modules_wrapper = []
for layer, config in self._detect_modules_to_compress():
wrapper = self._wrap_modules(layer, config)
self.modules_wrapper.append(wrapper)
self._wrap_model() | [
"def",
"reset",
"(",
"self",
",",
"checkpoint",
"=",
"None",
")",
":",
"self",
".",
"_unwrap_model",
"(",
")",
"if",
"checkpoint",
"is",
"not",
"None",
":",
"self",
".",
"bound_model",
".",
"load_state_dict",
"(",
"checkpoint",
")",
"self",
".",
"modules_to_compress",
"=",
"None",
"self",
".",
"modules_wrapper",
"=",
"[",
"]",
"for",
"layer",
",",
"config",
"in",
"self",
".",
"_detect_modules_to_compress",
"(",
")",
":",
"wrapper",
"=",
"self",
".",
"_wrap_modules",
"(",
"layer",
",",
"config",
")",
"self",
".",
"modules_wrapper",
".",
"append",
"(",
"wrapper",
")",
"self",
".",
"_wrap_model",
"(",
")"
] | [
65,
4
] | [
80,
26
] | python | en | ['en', 'error', 'th'] | False |
Compressor._detect_modules_to_compress | (self) |
detect all modules should be compressed, and save the result in `self.modules_to_compress`.
The model will be instrumented and user should never edit it after calling this method.
|
detect all modules should be compressed, and save the result in `self.modules_to_compress`.
The model will be instrumented and user should never edit it after calling this method.
| def _detect_modules_to_compress(self):
"""
detect all modules should be compressed, and save the result in `self.modules_to_compress`.
The model will be instrumented and user should never edit it after calling this method.
"""
if self.modules_to_compress is None:
self.modules_to_compress = []
for name, module in self.bound_model.named_modules():
if module == self.bound_model:
continue
layer = LayerInfo(name, module)
config = self.select_config(layer)
if config is not None:
self.modules_to_compress.append((layer, config))
return self.modules_to_compress | [
"def",
"_detect_modules_to_compress",
"(",
"self",
")",
":",
"if",
"self",
".",
"modules_to_compress",
"is",
"None",
":",
"self",
".",
"modules_to_compress",
"=",
"[",
"]",
"for",
"name",
",",
"module",
"in",
"self",
".",
"bound_model",
".",
"named_modules",
"(",
")",
":",
"if",
"module",
"==",
"self",
".",
"bound_model",
":",
"continue",
"layer",
"=",
"LayerInfo",
"(",
"name",
",",
"module",
")",
"config",
"=",
"self",
".",
"select_config",
"(",
"layer",
")",
"if",
"config",
"is",
"not",
"None",
":",
"self",
".",
"modules_to_compress",
".",
"append",
"(",
"(",
"layer",
",",
"config",
")",
")",
"return",
"self",
".",
"modules_to_compress"
] | [
82,
4
] | [
96,
39
] | python | en | ['en', 'error', 'th'] | False |
Compressor._wrap_model | (self) |
wrap all modules that needed to be compressed
|
wrap all modules that needed to be compressed | def _wrap_model(self):
"""
wrap all modules that needed to be compressed
"""
for wrapper in reversed(self.get_modules_wrapper()):
_setattr(self.bound_model, wrapper.name, wrapper)
self.is_wrapped = True | [
"def",
"_wrap_model",
"(",
"self",
")",
":",
"for",
"wrapper",
"in",
"reversed",
"(",
"self",
".",
"get_modules_wrapper",
"(",
")",
")",
":",
"_setattr",
"(",
"self",
".",
"bound_model",
",",
"wrapper",
".",
"name",
",",
"wrapper",
")",
"self",
".",
"is_wrapped",
"=",
"True"
] | [
98,
4
] | [
105,
30
] | python | en | ['en', 'error', 'th'] | False |
Compressor._unwrap_model | (self) |
unwrap all modules that needed to be compressed
|
unwrap all modules that needed to be compressed | def _unwrap_model(self):
"""
unwrap all modules that needed to be compressed
"""
for wrapper in self.get_modules_wrapper():
_setattr(self.bound_model, wrapper.name, wrapper.module)
self.is_wrapped = False | [
"def",
"_unwrap_model",
"(",
"self",
")",
":",
"for",
"wrapper",
"in",
"self",
".",
"get_modules_wrapper",
"(",
")",
":",
"_setattr",
"(",
"self",
".",
"bound_model",
",",
"wrapper",
".",
"name",
",",
"wrapper",
".",
"module",
")",
"self",
".",
"is_wrapped",
"=",
"False"
] | [
107,
4
] | [
114,
31
] | python | en | ['en', 'error', 'th'] | False |
Compressor.compress | (self) |
Compress the model with algorithm implemented by subclass.
The model will be instrumented and user should never edit it after calling this method.
`self.modules_to_compress` records all the to-be-compressed layers
Returns
-------
torch.nn.Module
model with specified modules compressed.
|
Compress the model with algorithm implemented by subclass. | def compress(self):
"""
Compress the model with algorithm implemented by subclass.
The model will be instrumented and user should never edit it after calling this method.
`self.modules_to_compress` records all the to-be-compressed layers
Returns
-------
torch.nn.Module
model with specified modules compressed.
"""
return self.bound_model | [
"def",
"compress",
"(",
"self",
")",
":",
"return",
"self",
".",
"bound_model"
] | [
116,
4
] | [
128,
31
] | python | en | ['en', 'error', 'th'] | False |
Compressor.set_wrappers_attribute | (self, name, value) |
To register attributes used in wrapped module's forward method.
If the type of the value is Torch.tensor, then this value is registered as a buffer in wrapper,
which will be saved by model.state_dict. Otherwise, this value is just a regular variable in wrapper.
Parameters
----------
name : str
name of the variable
value: any
value of the variable
|
To register attributes used in wrapped module's forward method.
If the type of the value is Torch.tensor, then this value is registered as a buffer in wrapper,
which will be saved by model.state_dict. Otherwise, this value is just a regular variable in wrapper. | def set_wrappers_attribute(self, name, value):
"""
To register attributes used in wrapped module's forward method.
If the type of the value is Torch.tensor, then this value is registered as a buffer in wrapper,
which will be saved by model.state_dict. Otherwise, this value is just a regular variable in wrapper.
Parameters
----------
name : str
name of the variable
value: any
value of the variable
"""
for wrapper in self.get_modules_wrapper():
if isinstance(value, torch.Tensor):
wrapper.register_buffer(name, value.clone())
else:
setattr(wrapper, name, value) | [
"def",
"set_wrappers_attribute",
"(",
"self",
",",
"name",
",",
"value",
")",
":",
"for",
"wrapper",
"in",
"self",
".",
"get_modules_wrapper",
"(",
")",
":",
"if",
"isinstance",
"(",
"value",
",",
"torch",
".",
"Tensor",
")",
":",
"wrapper",
".",
"register_buffer",
"(",
"name",
",",
"value",
".",
"clone",
"(",
")",
")",
"else",
":",
"setattr",
"(",
"wrapper",
",",
"name",
",",
"value",
")"
] | [
130,
4
] | [
147,
45
] | python | en | ['en', 'error', 'th'] | False |
Compressor.get_modules_to_compress | (self) |
To obtain all the to-be-compressed modules.
Returns
-------
list
a list of the layers, each of which is a tuple (`layer`, `config`),
`layer` is `LayerInfo`, `config` is a `dict`
|
To obtain all the to-be-compressed modules. | def get_modules_to_compress(self):
"""
To obtain all the to-be-compressed modules.
Returns
-------
list
a list of the layers, each of which is a tuple (`layer`, `config`),
`layer` is `LayerInfo`, `config` is a `dict`
"""
return self.modules_to_compress | [
"def",
"get_modules_to_compress",
"(",
"self",
")",
":",
"return",
"self",
".",
"modules_to_compress"
] | [
149,
4
] | [
159,
39
] | python | en | ['en', 'error', 'th'] | False |
Compressor.get_modules_wrapper | (self) |
To obtain all the wrapped modules.
Returns
-------
list
a list of the wrapped modules
|
To obtain all the wrapped modules. | def get_modules_wrapper(self):
"""
To obtain all the wrapped modules.
Returns
-------
list
a list of the wrapped modules
"""
return self.modules_wrapper | [
"def",
"get_modules_wrapper",
"(",
"self",
")",
":",
"return",
"self",
".",
"modules_wrapper"
] | [
161,
4
] | [
170,
35
] | python | en | ['en', 'error', 'th'] | False |
Compressor.select_config | (self, layer) |
Find the configuration for `layer` by parsing `self.config_list`
Parameters
----------
layer : LayerInfo
one layer
Returns
-------
config or None
the retrieved configuration for this layer, if None, this layer should
not be compressed
|
Find the configuration for `layer` by parsing `self.config_list` | def select_config(self, layer):
"""
Find the configuration for `layer` by parsing `self.config_list`
Parameters
----------
layer : LayerInfo
one layer
Returns
-------
config or None
the retrieved configuration for this layer, if None, this layer should
not be compressed
"""
ret = None
for config in self.config_list:
config = config.copy()
# expand config if key `default` is in config['op_types']
if 'op_types' in config and 'default' in config['op_types']:
expanded_op_types = []
for op_type in config['op_types']:
if op_type == 'default':
expanded_op_types.extend(default_layers.weighted_modules)
else:
expanded_op_types.append(op_type)
config['op_types'] = expanded_op_types
# check if condition is satisified
if 'op_types' in config and layer.type not in config['op_types']:
continue
if 'op_names' in config and layer.name not in config['op_names']:
continue
ret = config
if ret is None or 'exclude' in ret:
return None
return ret | [
"def",
"select_config",
"(",
"self",
",",
"layer",
")",
":",
"ret",
"=",
"None",
"for",
"config",
"in",
"self",
".",
"config_list",
":",
"config",
"=",
"config",
".",
"copy",
"(",
")",
"# expand config if key `default` is in config['op_types']",
"if",
"'op_types'",
"in",
"config",
"and",
"'default'",
"in",
"config",
"[",
"'op_types'",
"]",
":",
"expanded_op_types",
"=",
"[",
"]",
"for",
"op_type",
"in",
"config",
"[",
"'op_types'",
"]",
":",
"if",
"op_type",
"==",
"'default'",
":",
"expanded_op_types",
".",
"extend",
"(",
"default_layers",
".",
"weighted_modules",
")",
"else",
":",
"expanded_op_types",
".",
"append",
"(",
"op_type",
")",
"config",
"[",
"'op_types'",
"]",
"=",
"expanded_op_types",
"# check if condition is satisified",
"if",
"'op_types'",
"in",
"config",
"and",
"layer",
".",
"type",
"not",
"in",
"config",
"[",
"'op_types'",
"]",
":",
"continue",
"if",
"'op_names'",
"in",
"config",
"and",
"layer",
".",
"name",
"not",
"in",
"config",
"[",
"'op_names'",
"]",
":",
"continue",
"ret",
"=",
"config",
"if",
"ret",
"is",
"None",
"or",
"'exclude'",
"in",
"ret",
":",
"return",
"None",
"return",
"ret"
] | [
172,
4
] | [
209,
18
] | python | en | ['en', 'error', 'th'] | False |
Compressor.update_epoch | (self, epoch) |
If user want to update model every epoch, user can override this method.
This method should be called at the beginning of each epoch
Parameters
----------
epoch : num
the current epoch number
|
If user want to update model every epoch, user can override this method.
This method should be called at the beginning of each epoch | def update_epoch(self, epoch):
"""
If user want to update model every epoch, user can override this method.
This method should be called at the beginning of each epoch
Parameters
----------
epoch : num
the current epoch number
"""
pass | [
"def",
"update_epoch",
"(",
"self",
",",
"epoch",
")",
":",
"pass"
] | [
211,
4
] | [
221,
12
] | python | en | ['en', 'error', 'th'] | False |
Compressor._wrap_modules | (self, layer, config) |
This method is implemented in the subclasses, i.e., `Pruner` and `Quantizer`
Parameters
----------
layer : LayerInfo
the layer to instrument the compression operation
config : dict
the configuration for compressing this layer
|
This method is implemented in the subclasses, i.e., `Pruner` and `Quantizer` | def _wrap_modules(self, layer, config):
"""
This method is implemented in the subclasses, i.e., `Pruner` and `Quantizer`
Parameters
----------
layer : LayerInfo
the layer to instrument the compression operation
config : dict
the configuration for compressing this layer
"""
raise NotImplementedError() | [
"def",
"_wrap_modules",
"(",
"self",
",",
"layer",
",",
"config",
")",
":",
"raise",
"NotImplementedError",
"(",
")"
] | [
223,
4
] | [
234,
35
] | python | en | ['en', 'error', 'th'] | False |
PrunerModuleWrapper.__init__ | (self, module, module_name, module_type, config, pruner) |
Wrap an module to enable data parallel, forward method customization and buffer registeration.
Parameters
----------
module : pytorch module
the module user wants to compress
config : dict
the configurations that users specify for compression
module_name : str
the name of the module to compress, wrapper module shares same name
module_type : str
the type of the module to compress
pruner : Pruner
the pruner used to calculate mask
|
Wrap an module to enable data parallel, forward method customization and buffer registeration. | def __init__(self, module, module_name, module_type, config, pruner):
"""
Wrap an module to enable data parallel, forward method customization and buffer registeration.
Parameters
----------
module : pytorch module
the module user wants to compress
config : dict
the configurations that users specify for compression
module_name : str
the name of the module to compress, wrapper module shares same name
module_type : str
the type of the module to compress
pruner : Pruner
the pruner used to calculate mask
"""
super().__init__()
# origin layer information
self.module = module
self.name = module_name
self.type = module_type
# config and pruner
self.config = config
self.pruner = pruner
# register buffer for mask
self.register_buffer("weight_mask", torch.ones(self.module.weight.shape))
if hasattr(self.module, 'bias') and self.module.bias is not None:
self.register_buffer("bias_mask", torch.ones(self.module.bias.shape))
else:
self.register_buffer("bias_mask", None) | [
"def",
"__init__",
"(",
"self",
",",
"module",
",",
"module_name",
",",
"module_type",
",",
"config",
",",
"pruner",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"# origin layer information",
"self",
".",
"module",
"=",
"module",
"self",
".",
"name",
"=",
"module_name",
"self",
".",
"type",
"=",
"module_type",
"# config and pruner",
"self",
".",
"config",
"=",
"config",
"self",
".",
"pruner",
"=",
"pruner",
"# register buffer for mask",
"self",
".",
"register_buffer",
"(",
"\"weight_mask\"",
",",
"torch",
".",
"ones",
"(",
"self",
".",
"module",
".",
"weight",
".",
"shape",
")",
")",
"if",
"hasattr",
"(",
"self",
".",
"module",
",",
"'bias'",
")",
"and",
"self",
".",
"module",
".",
"bias",
"is",
"not",
"None",
":",
"self",
".",
"register_buffer",
"(",
"\"bias_mask\"",
",",
"torch",
".",
"ones",
"(",
"self",
".",
"module",
".",
"bias",
".",
"shape",
")",
")",
"else",
":",
"self",
".",
"register_buffer",
"(",
"\"bias_mask\"",
",",
"None",
")"
] | [
277,
4
] | [
308,
51
] | python | en | ['en', 'error', 'th'] | False |
Pruner.calc_mask | (self, wrapper, **kwargs) |
Pruners should overload this method to provide mask for weight tensors.
The mask must have the same shape and type comparing to the weight.
It will be applied with `mul()` operation on the weight.
This method is effectively hooked to `forward()` method of the model.
Parameters
----------
wrapper : Module
calculate mask for `wrapper.module`'s weight
|
Pruners should overload this method to provide mask for weight tensors.
The mask must have the same shape and type comparing to the weight.
It will be applied with `mul()` operation on the weight.
This method is effectively hooked to `forward()` method of the model. | def calc_mask(self, wrapper, **kwargs):
"""
Pruners should overload this method to provide mask for weight tensors.
The mask must have the same shape and type comparing to the weight.
It will be applied with `mul()` operation on the weight.
This method is effectively hooked to `forward()` method of the model.
Parameters
----------
wrapper : Module
calculate mask for `wrapper.module`'s weight
"""
raise NotImplementedError("Pruners must overload calc_mask()") | [
"def",
"calc_mask",
"(",
"self",
",",
"wrapper",
",",
"*",
"*",
"kwargs",
")",
":",
"raise",
"NotImplementedError",
"(",
"\"Pruners must overload calc_mask()\"",
")"
] | [
344,
4
] | [
356,
70
] | python | en | ['en', 'error', 'th'] | False |
Pruner._wrap_modules | (self, layer, config) |
Create a wrapper module to replace the original one.
Parameters
----------
layer : LayerInfo
the layer to instrument the mask
config : dict
the configuration for generating the mask
|
Create a wrapper module to replace the original one. | def _wrap_modules(self, layer, config):
"""
Create a wrapper module to replace the original one.
Parameters
----------
layer : LayerInfo
the layer to instrument the mask
config : dict
the configuration for generating the mask
"""
_logger.debug("Module detected to compress : %s.", layer.name)
wrapper = PrunerModuleWrapper(layer.module, layer.name, layer.type, config, self)
assert hasattr(layer.module, 'weight'), "module %s does not have 'weight' attribute" % layer.name
# move newly registered buffers to the same device of weight
wrapper.to(layer.module.weight.device)
return wrapper | [
"def",
"_wrap_modules",
"(",
"self",
",",
"layer",
",",
"config",
")",
":",
"_logger",
".",
"debug",
"(",
"\"Module detected to compress : %s.\"",
",",
"layer",
".",
"name",
")",
"wrapper",
"=",
"PrunerModuleWrapper",
"(",
"layer",
".",
"module",
",",
"layer",
".",
"name",
",",
"layer",
".",
"type",
",",
"config",
",",
"self",
")",
"assert",
"hasattr",
"(",
"layer",
".",
"module",
",",
"'weight'",
")",
",",
"\"module %s does not have 'weight' attribute\"",
"%",
"layer",
".",
"name",
"# move newly registered buffers to the same device of weight",
"wrapper",
".",
"to",
"(",
"layer",
".",
"module",
".",
"weight",
".",
"device",
")",
"return",
"wrapper"
] | [
358,
4
] | [
374,
22
] | python | en | ['en', 'error', 'th'] | False |
Pruner.export_model | (self, model_path, mask_path=None, onnx_path=None, input_shape=None, device=None) |
Export pruned model weights, masks and onnx model(optional)
Parameters
----------
model_path : str
path to save pruned model state_dict
mask_path : str
(optional) path to save mask dict
onnx_path : str
(optional) path to save onnx model
input_shape : list or tuple
input shape to onnx model
device : torch.device
device of the model, used to place the dummy input tensor for exporting onnx file.
the tensor is placed on cpu if ```device``` is None
|
Export pruned model weights, masks and onnx model(optional) | def export_model(self, model_path, mask_path=None, onnx_path=None, input_shape=None, device=None):
"""
Export pruned model weights, masks and onnx model(optional)
Parameters
----------
model_path : str
path to save pruned model state_dict
mask_path : str
(optional) path to save mask dict
onnx_path : str
(optional) path to save onnx model
input_shape : list or tuple
input shape to onnx model
device : torch.device
device of the model, used to place the dummy input tensor for exporting onnx file.
the tensor is placed on cpu if ```device``` is None
"""
assert model_path is not None, 'model_path must be specified'
mask_dict = {}
self._unwrap_model() # used for generating correct state_dict name without wrapper state
for wrapper in self.get_modules_wrapper():
weight_mask = wrapper.weight_mask
bias_mask = wrapper.bias_mask
if weight_mask is not None:
mask_sum = weight_mask.sum().item()
mask_num = weight_mask.numel()
_logger.debug('Layer: %s Sparsity: %.4f', wrapper.name, 1 - mask_sum / mask_num)
wrapper.module.weight.data = wrapper.module.weight.data.mul(weight_mask)
if bias_mask is not None:
wrapper.module.bias.data = wrapper.module.bias.data.mul(bias_mask)
# save mask to dict
mask_dict[wrapper.name] = {"weight": weight_mask, "bias": bias_mask}
torch.save(self.bound_model.state_dict(), model_path)
_logger.info('Model state_dict saved to %s', model_path)
if mask_path is not None:
torch.save(mask_dict, mask_path)
_logger.info('Mask dict saved to %s', mask_path)
if onnx_path is not None:
assert input_shape is not None, 'input_shape must be specified to export onnx model'
# input info needed
if device is None:
device = torch.device('cpu')
input_data = torch.Tensor(*input_shape)
torch.onnx.export(self.bound_model, input_data.to(device), onnx_path)
_logger.info('Model in onnx with input shape %s saved to %s', input_data.shape, onnx_path)
self._wrap_model() | [
"def",
"export_model",
"(",
"self",
",",
"model_path",
",",
"mask_path",
"=",
"None",
",",
"onnx_path",
"=",
"None",
",",
"input_shape",
"=",
"None",
",",
"device",
"=",
"None",
")",
":",
"assert",
"model_path",
"is",
"not",
"None",
",",
"'model_path must be specified'",
"mask_dict",
"=",
"{",
"}",
"self",
".",
"_unwrap_model",
"(",
")",
"# used for generating correct state_dict name without wrapper state",
"for",
"wrapper",
"in",
"self",
".",
"get_modules_wrapper",
"(",
")",
":",
"weight_mask",
"=",
"wrapper",
".",
"weight_mask",
"bias_mask",
"=",
"wrapper",
".",
"bias_mask",
"if",
"weight_mask",
"is",
"not",
"None",
":",
"mask_sum",
"=",
"weight_mask",
".",
"sum",
"(",
")",
".",
"item",
"(",
")",
"mask_num",
"=",
"weight_mask",
".",
"numel",
"(",
")",
"_logger",
".",
"debug",
"(",
"'Layer: %s Sparsity: %.4f'",
",",
"wrapper",
".",
"name",
",",
"1",
"-",
"mask_sum",
"/",
"mask_num",
")",
"wrapper",
".",
"module",
".",
"weight",
".",
"data",
"=",
"wrapper",
".",
"module",
".",
"weight",
".",
"data",
".",
"mul",
"(",
"weight_mask",
")",
"if",
"bias_mask",
"is",
"not",
"None",
":",
"wrapper",
".",
"module",
".",
"bias",
".",
"data",
"=",
"wrapper",
".",
"module",
".",
"bias",
".",
"data",
".",
"mul",
"(",
"bias_mask",
")",
"# save mask to dict",
"mask_dict",
"[",
"wrapper",
".",
"name",
"]",
"=",
"{",
"\"weight\"",
":",
"weight_mask",
",",
"\"bias\"",
":",
"bias_mask",
"}",
"torch",
".",
"save",
"(",
"self",
".",
"bound_model",
".",
"state_dict",
"(",
")",
",",
"model_path",
")",
"_logger",
".",
"info",
"(",
"'Model state_dict saved to %s'",
",",
"model_path",
")",
"if",
"mask_path",
"is",
"not",
"None",
":",
"torch",
".",
"save",
"(",
"mask_dict",
",",
"mask_path",
")",
"_logger",
".",
"info",
"(",
"'Mask dict saved to %s'",
",",
"mask_path",
")",
"if",
"onnx_path",
"is",
"not",
"None",
":",
"assert",
"input_shape",
"is",
"not",
"None",
",",
"'input_shape must be specified to export onnx model'",
"# input info needed",
"if",
"device",
"is",
"None",
":",
"device",
"=",
"torch",
".",
"device",
"(",
"'cpu'",
")",
"input_data",
"=",
"torch",
".",
"Tensor",
"(",
"*",
"input_shape",
")",
"torch",
".",
"onnx",
".",
"export",
"(",
"self",
".",
"bound_model",
",",
"input_data",
".",
"to",
"(",
"device",
")",
",",
"onnx_path",
")",
"_logger",
".",
"info",
"(",
"'Model in onnx with input shape %s saved to %s'",
",",
"input_data",
".",
"shape",
",",
"onnx_path",
")",
"self",
".",
"_wrap_model",
"(",
")"
] | [
376,
4
] | [
425,
26
] | python | en | ['en', 'error', 'th'] | False |
Pruner.load_model_state_dict | (self, model_state) |
Load the state dict saved from unwrapped model.
Parameters
----------
model_state : dict
state dict saved from unwrapped model
|
Load the state dict saved from unwrapped model. | def load_model_state_dict(self, model_state):
"""
Load the state dict saved from unwrapped model.
Parameters
----------
model_state : dict
state dict saved from unwrapped model
"""
if self.is_wrapped:
self._unwrap_model()
self.bound_model.load_state_dict(model_state)
self._wrap_model()
else:
self.bound_model.load_state_dict(model_state) | [
"def",
"load_model_state_dict",
"(",
"self",
",",
"model_state",
")",
":",
"if",
"self",
".",
"is_wrapped",
":",
"self",
".",
"_unwrap_model",
"(",
")",
"self",
".",
"bound_model",
".",
"load_state_dict",
"(",
"model_state",
")",
"self",
".",
"_wrap_model",
"(",
")",
"else",
":",
"self",
".",
"bound_model",
".",
"load_state_dict",
"(",
"model_state",
")"
] | [
427,
4
] | [
441,
57
] | python | en | ['en', 'error', 'th'] | False |
Pruner.get_pruned_weights | (self, dim=0) |
Log the simulated prune sparsity.
Parameters
----------
dim : int
the pruned dim.
|
Log the simulated prune sparsity. | def get_pruned_weights(self, dim=0):
"""
Log the simulated prune sparsity.
Parameters
----------
dim : int
the pruned dim.
"""
for _, wrapper in enumerate(self.get_modules_wrapper()):
weight_mask = wrapper.weight_mask
mask_size = weight_mask.size()
if len(mask_size) == 1:
index = torch.nonzero(weight_mask.abs() != 0).tolist()
else:
sum_idx = list(range(len(mask_size)))
sum_idx.remove(dim)
index = torch.nonzero(weight_mask.abs().sum(sum_idx) != 0).tolist()
_logger.info(f'simulated prune {wrapper.name} remain/total: {len(index)}/{weight_mask.size(dim)}') | [
"def",
"get_pruned_weights",
"(",
"self",
",",
"dim",
"=",
"0",
")",
":",
"for",
"_",
",",
"wrapper",
"in",
"enumerate",
"(",
"self",
".",
"get_modules_wrapper",
"(",
")",
")",
":",
"weight_mask",
"=",
"wrapper",
".",
"weight_mask",
"mask_size",
"=",
"weight_mask",
".",
"size",
"(",
")",
"if",
"len",
"(",
"mask_size",
")",
"==",
"1",
":",
"index",
"=",
"torch",
".",
"nonzero",
"(",
"weight_mask",
".",
"abs",
"(",
")",
"!=",
"0",
")",
".",
"tolist",
"(",
")",
"else",
":",
"sum_idx",
"=",
"list",
"(",
"range",
"(",
"len",
"(",
"mask_size",
")",
")",
")",
"sum_idx",
".",
"remove",
"(",
"dim",
")",
"index",
"=",
"torch",
".",
"nonzero",
"(",
"weight_mask",
".",
"abs",
"(",
")",
".",
"sum",
"(",
"sum_idx",
")",
"!=",
"0",
")",
".",
"tolist",
"(",
")",
"_logger",
".",
"info",
"(",
"f'simulated prune {wrapper.name} remain/total: {len(index)}/{weight_mask.size(dim)}'",
")"
] | [
443,
4
] | [
461,
110
] | python | en | ['en', 'error', 'th'] | False |
QuantizerModuleWrapper.__init__ | (self, module, module_name, module_type, config, quantizer) |
Wrap an module to enable data parallel, forward method customization and buffer registeration.
Parameters
----------
module : pytorch module
the module user wants to compress
config : dict
the configurations that users specify for compression
module_name : str
the name of the module to compress, wrapper module shares same name
module_type : str
the type of the module to compress
quantizer :quantizer
the quantizer used to calculate mask
|
Wrap an module to enable data parallel, forward method customization and buffer registeration. | def __init__(self, module, module_name, module_type, config, quantizer):
"""
Wrap an module to enable data parallel, forward method customization and buffer registeration.
Parameters
----------
module : pytorch module
the module user wants to compress
config : dict
the configurations that users specify for compression
module_name : str
the name of the module to compress, wrapper module shares same name
module_type : str
the type of the module to compress
quantizer :quantizer
the quantizer used to calculate mask
"""
super().__init__()
# origin layer information
self.module = module
self.name = module_name
self.type = module_type
# config and pruner
self.config = config
self.quantizer = quantizer
# register buffer and parameter
# old_weight is used to store origin weight and weight is used to store quantized weight
# the reason why weight is buffer instead of parameter is because in pytorch parameter is used as leaf
# if weight is leaf , then old_weight can not be updated.
if 'weight' in config['quant_types']:
if not _check_weight(self.module):
_logger.warning('Module %s does not have parameter "weight"', self.name)
else:
self.module.register_parameter('old_weight', torch.nn.Parameter(self.module.weight))
delattr(self.module, 'weight')
self.module.register_buffer('weight', self.module.old_weight) | [
"def",
"__init__",
"(",
"self",
",",
"module",
",",
"module_name",
",",
"module_type",
",",
"config",
",",
"quantizer",
")",
":",
"super",
"(",
")",
".",
"__init__",
"(",
")",
"# origin layer information",
"self",
".",
"module",
"=",
"module",
"self",
".",
"name",
"=",
"module_name",
"self",
".",
"type",
"=",
"module_type",
"# config and pruner",
"self",
".",
"config",
"=",
"config",
"self",
".",
"quantizer",
"=",
"quantizer",
"# register buffer and parameter",
"# old_weight is used to store origin weight and weight is used to store quantized weight",
"# the reason why weight is buffer instead of parameter is because in pytorch parameter is used as leaf",
"# if weight is leaf , then old_weight can not be updated.",
"if",
"'weight'",
"in",
"config",
"[",
"'quant_types'",
"]",
":",
"if",
"not",
"_check_weight",
"(",
"self",
".",
"module",
")",
":",
"_logger",
".",
"warning",
"(",
"'Module %s does not have parameter \"weight\"'",
",",
"self",
".",
"name",
")",
"else",
":",
"self",
".",
"module",
".",
"register_parameter",
"(",
"'old_weight'",
",",
"torch",
".",
"nn",
".",
"Parameter",
"(",
"self",
".",
"module",
".",
"weight",
")",
")",
"delattr",
"(",
"self",
".",
"module",
",",
"'weight'",
")",
"self",
".",
"module",
".",
"register_buffer",
"(",
"'weight'",
",",
"self",
".",
"module",
".",
"old_weight",
")"
] | [
465,
4
] | [
501,
77
] | python | en | ['en', 'error', 'th'] | False |
Quantizer.quantize_weight | (self, wrapper, **kwargs) |
quantize should overload this method to quantize weight.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
wrapper : QuantizerModuleWrapper
the wrapper for origin module
|
quantize should overload this method to quantize weight.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
wrapper : QuantizerModuleWrapper
the wrapper for origin module
| def quantize_weight(self, wrapper, **kwargs):
"""
quantize should overload this method to quantize weight.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
wrapper : QuantizerModuleWrapper
the wrapper for origin module
"""
raise NotImplementedError('Quantizer must overload quantize_weight()') | [
"def",
"quantize_weight",
"(",
"self",
",",
"wrapper",
",",
"*",
"*",
"kwargs",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Quantizer must overload quantize_weight()'",
")"
] | [
543,
4
] | [
552,
78
] | python | en | ['en', 'error', 'th'] | False |
Quantizer.quantize_output | (self, output, wrapper, **kwargs) |
quantize should overload this method to quantize output.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
output : Tensor
output that needs to be quantized
wrapper : QuantizerModuleWrapper
the wrapper for origin module
|
quantize should overload this method to quantize output.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
output : Tensor
output that needs to be quantized
wrapper : QuantizerModuleWrapper
the wrapper for origin module
| def quantize_output(self, output, wrapper, **kwargs):
"""
quantize should overload this method to quantize output.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
output : Tensor
output that needs to be quantized
wrapper : QuantizerModuleWrapper
the wrapper for origin module
"""
raise NotImplementedError('Quantizer must overload quantize_output()') | [
"def",
"quantize_output",
"(",
"self",
",",
"output",
",",
"wrapper",
",",
"*",
"*",
"kwargs",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Quantizer must overload quantize_output()'",
")"
] | [
554,
4
] | [
565,
78
] | python | en | ['en', 'error', 'th'] | False |
Quantizer.quantize_input | (self, *inputs, wrapper, **kwargs) |
quantize should overload this method to quantize input.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
inputs : Tensor
inputs that needs to be quantized
wrapper : QuantizerModuleWrapper
the wrapper for origin module
|
quantize should overload this method to quantize input.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
inputs : Tensor
inputs that needs to be quantized
wrapper : QuantizerModuleWrapper
the wrapper for origin module
| def quantize_input(self, *inputs, wrapper, **kwargs):
"""
quantize should overload this method to quantize input.
This method is effectively hooked to :meth:`forward` of the model.
Parameters
----------
inputs : Tensor
inputs that needs to be quantized
wrapper : QuantizerModuleWrapper
the wrapper for origin module
"""
raise NotImplementedError('Quantizer must overload quantize_input()') | [
"def",
"quantize_input",
"(",
"self",
",",
"*",
"inputs",
",",
"wrapper",
",",
"*",
"*",
"kwargs",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Quantizer must overload quantize_input()'",
")"
] | [
567,
4
] | [
578,
77
] | python | en | ['en', 'error', 'th'] | False |
Quantizer._wrap_modules | (self, layer, config) |
Create a wrapper forward function to replace the original one.
Parameters
----------
layer : LayerInfo
the layer to instrument the mask
config : dict
the configuration for quantization
|
Create a wrapper forward function to replace the original one.
Parameters
----------
layer : LayerInfo
the layer to instrument the mask
config : dict
the configuration for quantization
| def _wrap_modules(self, layer, config):
"""
Create a wrapper forward function to replace the original one.
Parameters
----------
layer : LayerInfo
the layer to instrument the mask
config : dict
the configuration for quantization
"""
assert 'quant_types' in config, 'must provide quant_types in config'
assert isinstance(config['quant_types'], list), 'quant_types must be list type'
assert 'quant_bits' in config, 'must provide quant_bits in config'
assert isinstance(config['quant_bits'], int) or isinstance(config['quant_bits'], dict), 'quant_bits must be dict type or int type'
if isinstance(config['quant_bits'], dict):
for quant_type in config['quant_types']:
assert quant_type in config['quant_bits'], 'bits length for %s must be specified in quant_bits dict' % quant_type
return QuantizerModuleWrapper(layer.module, layer.name, layer.type, config, self) | [
"def",
"_wrap_modules",
"(",
"self",
",",
"layer",
",",
"config",
")",
":",
"assert",
"'quant_types'",
"in",
"config",
",",
"'must provide quant_types in config'",
"assert",
"isinstance",
"(",
"config",
"[",
"'quant_types'",
"]",
",",
"list",
")",
",",
"'quant_types must be list type'",
"assert",
"'quant_bits'",
"in",
"config",
",",
"'must provide quant_bits in config'",
"assert",
"isinstance",
"(",
"config",
"[",
"'quant_bits'",
"]",
",",
"int",
")",
"or",
"isinstance",
"(",
"config",
"[",
"'quant_bits'",
"]",
",",
"dict",
")",
",",
"'quant_bits must be dict type or int type'",
"if",
"isinstance",
"(",
"config",
"[",
"'quant_bits'",
"]",
",",
"dict",
")",
":",
"for",
"quant_type",
"in",
"config",
"[",
"'quant_types'",
"]",
":",
"assert",
"quant_type",
"in",
"config",
"[",
"'quant_bits'",
"]",
",",
"'bits length for %s must be specified in quant_bits dict'",
"%",
"quant_type",
"return",
"QuantizerModuleWrapper",
"(",
"layer",
".",
"module",
",",
"layer",
".",
"name",
",",
"layer",
".",
"type",
",",
"config",
",",
"self",
")"
] | [
580,
4
] | [
599,
89
] | python | en | ['en', 'error', 'th'] | False |
Quantizer.export_model_save | (self, model, model_path, calibration_config=None, calibration_path=None, onnx_path=None,
input_shape=None, device=None) |
This method helps save pytorch model, calibration config, onnx model in quantizer.
Parameters
----------
model : pytorch model
pytorch model to be saved
model_path : str
path to save pytorch
calibration_config: dict
(optional) config of calibration parameters
calibration_path : str
(optional) path to save quantize parameters after calibration
onnx_path : str
(optional) path to save onnx model
input_shape : list or tuple
input shape to onnx model
device : torch.device
device of the model, used to place the dummy input tensor for exporting onnx file.
the tensor is placed on cpu if ```device``` is None
|
This method helps save pytorch model, calibration config, onnx model in quantizer. | def export_model_save(self, model, model_path, calibration_config=None, calibration_path=None, onnx_path=None,
input_shape=None, device=None):
"""
This method helps save pytorch model, calibration config, onnx model in quantizer.
Parameters
----------
model : pytorch model
pytorch model to be saved
model_path : str
path to save pytorch
calibration_config: dict
(optional) config of calibration parameters
calibration_path : str
(optional) path to save quantize parameters after calibration
onnx_path : str
(optional) path to save onnx model
input_shape : list or tuple
input shape to onnx model
device : torch.device
device of the model, used to place the dummy input tensor for exporting onnx file.
the tensor is placed on cpu if ```device``` is None
"""
torch.save(model.state_dict(), model_path)
_logger.info('Model state_dict saved to %s', model_path)
if calibration_path is not None:
torch.save(calibration_config, calibration_path)
_logger.info('Mask dict saved to %s', calibration_path)
if onnx_path is not None:
assert input_shape is not None, 'input_shape must be specified to export onnx model'
# input info needed
if device is None:
device = torch.device('cpu')
input_data = torch.Tensor(*input_shape)
torch.onnx.export(self.bound_model, input_data.to(device), onnx_path)
_logger.info('Model in onnx with input shape %s saved to %s', input_data.shape, onnx_path) | [
"def",
"export_model_save",
"(",
"self",
",",
"model",
",",
"model_path",
",",
"calibration_config",
"=",
"None",
",",
"calibration_path",
"=",
"None",
",",
"onnx_path",
"=",
"None",
",",
"input_shape",
"=",
"None",
",",
"device",
"=",
"None",
")",
":",
"torch",
".",
"save",
"(",
"model",
".",
"state_dict",
"(",
")",
",",
"model_path",
")",
"_logger",
".",
"info",
"(",
"'Model state_dict saved to %s'",
",",
"model_path",
")",
"if",
"calibration_path",
"is",
"not",
"None",
":",
"torch",
".",
"save",
"(",
"calibration_config",
",",
"calibration_path",
")",
"_logger",
".",
"info",
"(",
"'Mask dict saved to %s'",
",",
"calibration_path",
")",
"if",
"onnx_path",
"is",
"not",
"None",
":",
"assert",
"input_shape",
"is",
"not",
"None",
",",
"'input_shape must be specified to export onnx model'",
"# input info needed",
"if",
"device",
"is",
"None",
":",
"device",
"=",
"torch",
".",
"device",
"(",
"'cpu'",
")",
"input_data",
"=",
"torch",
".",
"Tensor",
"(",
"*",
"input_shape",
")",
"torch",
".",
"onnx",
".",
"export",
"(",
"self",
".",
"bound_model",
",",
"input_data",
".",
"to",
"(",
"device",
")",
",",
"onnx_path",
")",
"_logger",
".",
"info",
"(",
"'Model in onnx with input shape %s saved to %s'",
",",
"input_data",
".",
"shape",
",",
"onnx_path",
")"
] | [
601,
4
] | [
636,
102
] | python | en | ['en', 'error', 'th'] | False |
Quantizer.export_model | (self, model_path, calibration_path=None, onnx_path=None, input_shape=None, device=None) |
Export quantized model weights and calibration parameters
Parameters
----------
model_path : str
path to save quantized model weight
calibration_path : str
(optional) path to save quantize parameters after calibration
onnx_path : str
(optional) path to save onnx model
input_shape : list or tuple
input shape to onnx model
device : torch.device
device of the model, used to place the dummy input tensor for exporting onnx file.
the tensor is placed on cpu if ```device``` is None
Returns
-------
Dict
|
Export quantized model weights and calibration parameters | def export_model(self, model_path, calibration_path=None, onnx_path=None, input_shape=None, device=None):
"""
Export quantized model weights and calibration parameters
Parameters
----------
model_path : str
path to save quantized model weight
calibration_path : str
(optional) path to save quantize parameters after calibration
onnx_path : str
(optional) path to save onnx model
input_shape : list or tuple
input shape to onnx model
device : torch.device
device of the model, used to place the dummy input tensor for exporting onnx file.
the tensor is placed on cpu if ```device``` is None
Returns
-------
Dict
"""
raise NotImplementedError('Quantizer must overload export_model()') | [
"def",
"export_model",
"(",
"self",
",",
"model_path",
",",
"calibration_path",
"=",
"None",
",",
"onnx_path",
"=",
"None",
",",
"input_shape",
"=",
"None",
",",
"device",
"=",
"None",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Quantizer must overload export_model()'",
")"
] | [
638,
4
] | [
660,
75
] | python | en | ['en', 'error', 'th'] | False |
QuantGrad._quantize | (cls, x, scale, zero_point) |
Reference function for quantizing x -- non-clamped.
Parameters
----------
x : Tensor
tensor to be quantized
scale : Tensor
scale for quantizing x
zero_point : Tensor
zero_point for quantizing x
Returns
-------
tensor
quantized x without clamped
|
Reference function for quantizing x -- non-clamped.
Parameters
----------
x : Tensor
tensor to be quantized
scale : Tensor
scale for quantizing x
zero_point : Tensor
zero_point for quantizing x
Returns
-------
tensor
quantized x without clamped
| def _quantize(cls, x, scale, zero_point):
"""
Reference function for quantizing x -- non-clamped.
Parameters
----------
x : Tensor
tensor to be quantized
scale : Tensor
scale for quantizing x
zero_point : Tensor
zero_point for quantizing x
Returns
-------
tensor
quantized x without clamped
"""
return ((x / scale) + zero_point).round() | [
"def",
"_quantize",
"(",
"cls",
",",
"x",
",",
"scale",
",",
"zero_point",
")",
":",
"return",
"(",
"(",
"x",
"/",
"scale",
")",
"+",
"zero_point",
")",
".",
"round",
"(",
")"
] | [
684,
4
] | [
700,
49
] | python | en | ['en', 'error', 'th'] | False |
QuantGrad.get_bits_length | (cls, config, quant_type) |
Get bit for quantize config
Parameters
----------
config : Dict
the configuration for quantization
quant_type : str
quant type
Returns
-------
int
n-bits for quantization configuration
|
Get bit for quantize config
Parameters
----------
config : Dict
the configuration for quantization
quant_type : str
quant type
Returns
-------
int
n-bits for quantization configuration
| def get_bits_length(cls, config, quant_type):
"""
Get bit for quantize config
Parameters
----------
config : Dict
the configuration for quantization
quant_type : str
quant type
Returns
-------
int
n-bits for quantization configuration
"""
if isinstance(config["quant_bits"], int):
return config["quant_bits"]
else:
return config["quant_bits"].get(quant_type) | [
"def",
"get_bits_length",
"(",
"cls",
",",
"config",
",",
"quant_type",
")",
":",
"if",
"isinstance",
"(",
"config",
"[",
"\"quant_bits\"",
"]",
",",
"int",
")",
":",
"return",
"config",
"[",
"\"quant_bits\"",
"]",
"else",
":",
"return",
"config",
"[",
"\"quant_bits\"",
"]",
".",
"get",
"(",
"quant_type",
")"
] | [
703,
4
] | [
720,
55
] | python | en | ['en', 'error', 'th'] | False |
QuantGrad.quant_backward | (tensor, grad_output, quant_type, scale, zero_point, qmin, qmax) |
This method should be overrided by subclass to provide customized backward function,
default implementation is Straight-Through Estimator
Parameters
----------
tensor : Tensor
input of quantization operation
grad_output : Tensor
gradient of the output of quantization operation
scale : Tensor
the type of quantization, it can be `QuantType.QUANT_INPUT`, `QuantType.QUANT_WEIGHT`,
`QuantType.QUANT_OUTPUT`, you can define different behavior for different types.
zero_point : Tensor
zero_point for quantizing tensor
qmin : Tensor
quant_min for quantizing tensor
qmax : Tensor
quant_max for quantizng tensor
Returns
-------
tensor
gradient of the input of quantization operation
|
This method should be overrided by subclass to provide customized backward function,
default implementation is Straight-Through Estimator
Parameters
----------
tensor : Tensor
input of quantization operation
grad_output : Tensor
gradient of the output of quantization operation
scale : Tensor
the type of quantization, it can be `QuantType.QUANT_INPUT`, `QuantType.QUANT_WEIGHT`,
`QuantType.QUANT_OUTPUT`, you can define different behavior for different types.
zero_point : Tensor
zero_point for quantizing tensor
qmin : Tensor
quant_min for quantizing tensor
qmax : Tensor
quant_max for quantizng tensor
Returns
-------
tensor
gradient of the input of quantization operation
| def quant_backward(tensor, grad_output, quant_type, scale, zero_point, qmin, qmax):
"""
This method should be overrided by subclass to provide customized backward function,
default implementation is Straight-Through Estimator
Parameters
----------
tensor : Tensor
input of quantization operation
grad_output : Tensor
gradient of the output of quantization operation
scale : Tensor
the type of quantization, it can be `QuantType.QUANT_INPUT`, `QuantType.QUANT_WEIGHT`,
`QuantType.QUANT_OUTPUT`, you can define different behavior for different types.
zero_point : Tensor
zero_point for quantizing tensor
qmin : Tensor
quant_min for quantizing tensor
qmax : Tensor
quant_max for quantizng tensor
Returns
-------
tensor
gradient of the input of quantization operation
"""
return grad_output | [
"def",
"quant_backward",
"(",
"tensor",
",",
"grad_output",
",",
"quant_type",
",",
"scale",
",",
"zero_point",
",",
"qmin",
",",
"qmax",
")",
":",
"return",
"grad_output"
] | [
723,
4
] | [
747,
26
] | python | en | ['en', 'error', 'th'] | False |
test_platform_manually_configured | (hass) | Test that nothing happens when platform is manually configured. | Test that nothing happens when platform is manually configured. | async def test_platform_manually_configured(hass):
"""Test that nothing happens when platform is manually configured."""
assert (
await async_setup_component(
hass, CAMERA_DOMAIN, {CAMERA_DOMAIN: {"platform": AXIS_DOMAIN}}
)
is True
)
assert AXIS_DOMAIN not in hass.data | [
"async",
"def",
"test_platform_manually_configured",
"(",
"hass",
")",
":",
"assert",
"(",
"await",
"async_setup_component",
"(",
"hass",
",",
"CAMERA_DOMAIN",
",",
"{",
"CAMERA_DOMAIN",
":",
"{",
"\"platform\"",
":",
"AXIS_DOMAIN",
"}",
"}",
")",
"is",
"True",
")",
"assert",
"AXIS_DOMAIN",
"not",
"in",
"hass",
".",
"data"
] | [
16,
0
] | [
25,
39
] | python | en | ['en', 'en', 'en'] | True |
test_camera | (hass) | Test that Axis camera platform is loaded properly. | Test that Axis camera platform is loaded properly. | async def test_camera(hass):
"""Test that Axis camera platform is loaded properly."""
await setup_axis_integration(hass)
assert len(hass.states.async_entity_ids(CAMERA_DOMAIN)) == 1
entity_id = f"{CAMERA_DOMAIN}.{NAME}"
cam = hass.states.get(entity_id)
assert cam.state == STATE_IDLE
assert cam.name == NAME
camera_entity = camera._get_camera_from_entity_id(hass, entity_id)
assert camera_entity.image_source == "http://1.2.3.4:80/axis-cgi/jpg/image.cgi"
assert camera_entity.mjpeg_source == "http://1.2.3.4:80/axis-cgi/mjpg/video.cgi"
assert (
await camera_entity.stream_source()
== "rtsp://root:[email protected]/axis-media/media.amp?videocodec=h264"
) | [
"async",
"def",
"test_camera",
"(",
"hass",
")",
":",
"await",
"setup_axis_integration",
"(",
"hass",
")",
"assert",
"len",
"(",
"hass",
".",
"states",
".",
"async_entity_ids",
"(",
"CAMERA_DOMAIN",
")",
")",
"==",
"1",
"entity_id",
"=",
"f\"{CAMERA_DOMAIN}.{NAME}\"",
"cam",
"=",
"hass",
".",
"states",
".",
"get",
"(",
"entity_id",
")",
"assert",
"cam",
".",
"state",
"==",
"STATE_IDLE",
"assert",
"cam",
".",
"name",
"==",
"NAME",
"camera_entity",
"=",
"camera",
".",
"_get_camera_from_entity_id",
"(",
"hass",
",",
"entity_id",
")",
"assert",
"camera_entity",
".",
"image_source",
"==",
"\"http://1.2.3.4:80/axis-cgi/jpg/image.cgi\"",
"assert",
"camera_entity",
".",
"mjpeg_source",
"==",
"\"http://1.2.3.4:80/axis-cgi/mjpg/video.cgi\"",
"assert",
"(",
"await",
"camera_entity",
".",
"stream_source",
"(",
")",
"==",
"\"rtsp://root:[email protected]/axis-media/media.amp?videocodec=h264\"",
")"
] | [
28,
0
] | [
46,
5
] | python | en | ['en', 'en', 'en'] | True |
test_camera_with_stream_profile | (hass) | Test that Axis camera entity is using the correct path with stream profike. | Test that Axis camera entity is using the correct path with stream profike. | async def test_camera_with_stream_profile(hass):
"""Test that Axis camera entity is using the correct path with stream profike."""
with patch.dict(ENTRY_OPTIONS, {CONF_STREAM_PROFILE: "profile_1"}):
await setup_axis_integration(hass)
assert len(hass.states.async_entity_ids(CAMERA_DOMAIN)) == 1
entity_id = f"{CAMERA_DOMAIN}.{NAME}"
cam = hass.states.get(entity_id)
assert cam.state == STATE_IDLE
assert cam.name == NAME
camera_entity = camera._get_camera_from_entity_id(hass, entity_id)
assert camera_entity.image_source == "http://1.2.3.4:80/axis-cgi/jpg/image.cgi"
assert (
camera_entity.mjpeg_source
== "http://1.2.3.4:80/axis-cgi/mjpg/video.cgi?&streamprofile=profile_1"
)
assert (
await camera_entity.stream_source()
== "rtsp://root:[email protected]/axis-media/media.amp?videocodec=h264&streamprofile=profile_1"
) | [
"async",
"def",
"test_camera_with_stream_profile",
"(",
"hass",
")",
":",
"with",
"patch",
".",
"dict",
"(",
"ENTRY_OPTIONS",
",",
"{",
"CONF_STREAM_PROFILE",
":",
"\"profile_1\"",
"}",
")",
":",
"await",
"setup_axis_integration",
"(",
"hass",
")",
"assert",
"len",
"(",
"hass",
".",
"states",
".",
"async_entity_ids",
"(",
"CAMERA_DOMAIN",
")",
")",
"==",
"1",
"entity_id",
"=",
"f\"{CAMERA_DOMAIN}.{NAME}\"",
"cam",
"=",
"hass",
".",
"states",
".",
"get",
"(",
"entity_id",
")",
"assert",
"cam",
".",
"state",
"==",
"STATE_IDLE",
"assert",
"cam",
".",
"name",
"==",
"NAME",
"camera_entity",
"=",
"camera",
".",
"_get_camera_from_entity_id",
"(",
"hass",
",",
"entity_id",
")",
"assert",
"camera_entity",
".",
"image_source",
"==",
"\"http://1.2.3.4:80/axis-cgi/jpg/image.cgi\"",
"assert",
"(",
"camera_entity",
".",
"mjpeg_source",
"==",
"\"http://1.2.3.4:80/axis-cgi/mjpg/video.cgi?&streamprofile=profile_1\"",
")",
"assert",
"(",
"await",
"camera_entity",
".",
"stream_source",
"(",
")",
"==",
"\"rtsp://root:[email protected]/axis-media/media.amp?videocodec=h264&streamprofile=profile_1\"",
")"
] | [
49,
0
] | [
71,
5
] | python | en | ['en', 'en', 'en'] | True |
test_camera_disabled | (hass) | Test that Axis camera platform is loaded properly but does not create camera entity. | Test that Axis camera platform is loaded properly but does not create camera entity. | async def test_camera_disabled(hass):
"""Test that Axis camera platform is loaded properly but does not create camera entity."""
with patch("axis.vapix.Params.image_format", new=None):
await setup_axis_integration(hass)
assert len(hass.states.async_entity_ids(CAMERA_DOMAIN)) == 0 | [
"async",
"def",
"test_camera_disabled",
"(",
"hass",
")",
":",
"with",
"patch",
"(",
"\"axis.vapix.Params.image_format\"",
",",
"new",
"=",
"None",
")",
":",
"await",
"setup_axis_integration",
"(",
"hass",
")",
"assert",
"len",
"(",
"hass",
".",
"states",
".",
"async_entity_ids",
"(",
"CAMERA_DOMAIN",
")",
")",
"==",
"0"
] | [
74,
0
] | [
79,
64
] | python | en | ['en', 'en', 'en'] | True |
infer_framework_from_model | (model, model_classes: Optional[Dict[str, type]] = None, revision: Optional[str] = None) |
Select framework (TensorFlow or PyTorch) to use from the :obj:`model` passed. Returns a tuple (framework, model).
If :obj:`model` is instantiated, this function will just infer the framework from the model class. Otherwise
:obj:`model` is actually a checkpoint name and this method will try to instantiate it using :obj:`model_classes`.
Since we don't want to instantiate the model twice, this model is returned for use by the pipeline.
If both frameworks are installed and available for :obj:`model`, PyTorch is selected.
Args:
model (:obj:`str`, :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`):
The model to infer the framework from. If :obj:`str`, a checkpoint name. The model to infer the framewrok
from.
model_classes (dictionary :obj:`str` to :obj:`type`, `optional`):
A mapping framework to class.
revision (:obj:`str`, `optional`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
Returns:
:obj:`Tuple`: A tuple framework, model.
|
Select framework (TensorFlow or PyTorch) to use from the :obj:`model` passed. Returns a tuple (framework, model). | def infer_framework_from_model(model, model_classes: Optional[Dict[str, type]] = None, revision: Optional[str] = None):
"""
Select framework (TensorFlow or PyTorch) to use from the :obj:`model` passed. Returns a tuple (framework, model).
If :obj:`model` is instantiated, this function will just infer the framework from the model class. Otherwise
:obj:`model` is actually a checkpoint name and this method will try to instantiate it using :obj:`model_classes`.
Since we don't want to instantiate the model twice, this model is returned for use by the pipeline.
If both frameworks are installed and available for :obj:`model`, PyTorch is selected.
Args:
model (:obj:`str`, :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`):
The model to infer the framework from. If :obj:`str`, a checkpoint name. The model to infer the framewrok
from.
model_classes (dictionary :obj:`str` to :obj:`type`, `optional`):
A mapping framework to class.
revision (:obj:`str`, `optional`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
Returns:
:obj:`Tuple`: A tuple framework, model.
"""
if not is_tf_available() and not is_torch_available():
raise RuntimeError(
"At least one of TensorFlow 2.0 or PyTorch should be installed. "
"To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
"To install PyTorch, read the instructions at https://pytorch.org/."
)
if isinstance(model, str):
if is_torch_available() and not is_tf_available():
model_class = model_classes.get("pt", AutoModel)
model = model_class.from_pretrained(model, revision=revision)
elif is_tf_available() and not is_torch_available():
model_class = model_classes.get("tf", TFAutoModel)
model = model_class.from_pretrained(model, revision=revision)
else:
try:
model_class = model_classes.get("pt", AutoModel)
model = model_class.from_pretrained(model, revision=revision)
except OSError:
model_class = model_classes.get("tf", TFAutoModel)
model = model_class.from_pretrained(model, revision=revision)
framework = "tf" if model.__class__.__name__.startswith("TF") else "pt"
return framework, model | [
"def",
"infer_framework_from_model",
"(",
"model",
",",
"model_classes",
":",
"Optional",
"[",
"Dict",
"[",
"str",
",",
"type",
"]",
"]",
"=",
"None",
",",
"revision",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
")",
":",
"if",
"not",
"is_tf_available",
"(",
")",
"and",
"not",
"is_torch_available",
"(",
")",
":",
"raise",
"RuntimeError",
"(",
"\"At least one of TensorFlow 2.0 or PyTorch should be installed. \"",
"\"To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ \"",
"\"To install PyTorch, read the instructions at https://pytorch.org/.\"",
")",
"if",
"isinstance",
"(",
"model",
",",
"str",
")",
":",
"if",
"is_torch_available",
"(",
")",
"and",
"not",
"is_tf_available",
"(",
")",
":",
"model_class",
"=",
"model_classes",
".",
"get",
"(",
"\"pt\"",
",",
"AutoModel",
")",
"model",
"=",
"model_class",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"elif",
"is_tf_available",
"(",
")",
"and",
"not",
"is_torch_available",
"(",
")",
":",
"model_class",
"=",
"model_classes",
".",
"get",
"(",
"\"tf\"",
",",
"TFAutoModel",
")",
"model",
"=",
"model_class",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"else",
":",
"try",
":",
"model_class",
"=",
"model_classes",
".",
"get",
"(",
"\"pt\"",
",",
"AutoModel",
")",
"model",
"=",
"model_class",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"except",
"OSError",
":",
"model_class",
"=",
"model_classes",
".",
"get",
"(",
"\"tf\"",
",",
"TFAutoModel",
")",
"model",
"=",
"model_class",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"framework",
"=",
"\"tf\"",
"if",
"model",
".",
"__class__",
".",
"__name__",
".",
"startswith",
"(",
"\"TF\"",
")",
"else",
"\"pt\"",
"return",
"framework",
",",
"model"
] | [
49,
0
] | [
95,
27
] | python | en | ['en', 'error', 'th'] | False |
get_framework | (model, revision: Optional[str] = None) |
Select framework (TensorFlow or PyTorch) to use.
Args:
model (:obj:`str`, :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`):
If both frameworks are installed, picks the one corresponding to the model passed (either a model class or
the model name). If no specific model is provided, defaults to using PyTorch.
|
Select framework (TensorFlow or PyTorch) to use. | def get_framework(model, revision: Optional[str] = None):
"""
Select framework (TensorFlow or PyTorch) to use.
Args:
model (:obj:`str`, :class:`~transformers.PreTrainedModel` or :class:`~transformers.TFPreTrainedModel`):
If both frameworks are installed, picks the one corresponding to the model passed (either a model class or
the model name). If no specific model is provided, defaults to using PyTorch.
"""
warnings.warn(
"`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.",
FutureWarning,
)
if not is_tf_available() and not is_torch_available():
raise RuntimeError(
"At least one of TensorFlow 2.0 or PyTorch should be installed. "
"To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ "
"To install PyTorch, read the instructions at https://pytorch.org/."
)
if isinstance(model, str):
if is_torch_available() and not is_tf_available():
model = AutoModel.from_pretrained(model, revision=revision)
elif is_tf_available() and not is_torch_available():
model = TFAutoModel.from_pretrained(model, revision=revision)
else:
try:
model = AutoModel.from_pretrained(model, revision=revision)
except OSError:
model = TFAutoModel.from_pretrained(model, revision=revision)
framework = "tf" if model.__class__.__name__.startswith("TF") else "pt"
return framework | [
"def",
"get_framework",
"(",
"model",
",",
"revision",
":",
"Optional",
"[",
"str",
"]",
"=",
"None",
")",
":",
"warnings",
".",
"warn",
"(",
"\"`get_framework` is deprecated and will be removed in v5, use `infer_framework_from_model` instead.\"",
",",
"FutureWarning",
",",
")",
"if",
"not",
"is_tf_available",
"(",
")",
"and",
"not",
"is_torch_available",
"(",
")",
":",
"raise",
"RuntimeError",
"(",
"\"At least one of TensorFlow 2.0 or PyTorch should be installed. \"",
"\"To install TensorFlow 2.0, read the instructions at https://www.tensorflow.org/install/ \"",
"\"To install PyTorch, read the instructions at https://pytorch.org/.\"",
")",
"if",
"isinstance",
"(",
"model",
",",
"str",
")",
":",
"if",
"is_torch_available",
"(",
")",
"and",
"not",
"is_tf_available",
"(",
")",
":",
"model",
"=",
"AutoModel",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"elif",
"is_tf_available",
"(",
")",
"and",
"not",
"is_torch_available",
"(",
")",
":",
"model",
"=",
"TFAutoModel",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"else",
":",
"try",
":",
"model",
"=",
"AutoModel",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"except",
"OSError",
":",
"model",
"=",
"TFAutoModel",
".",
"from_pretrained",
"(",
"model",
",",
"revision",
"=",
"revision",
")",
"framework",
"=",
"\"tf\"",
"if",
"model",
".",
"__class__",
".",
"__name__",
".",
"startswith",
"(",
"\"TF\"",
")",
"else",
"\"pt\"",
"return",
"framework"
] | [
98,
0
] | [
129,
20
] | python | en | ['en', 'error', 'th'] | False |
get_default_model | (targeted_task: Dict, framework: Optional[str], task_options: Optional[Any]) |
Select a default model to use for a given task. Defaults to pytorch if ambiguous.
Args:
targeted_task (:obj:`Dict` ):
Dictionary representing the given task, that should contain default models
framework (:obj:`str`, None)
"pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet.
task_options (:obj:`Any`, None)
Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for
translation task.
Returns
:obj:`str` The model string representing the default model for this pipeline
|
Select a default model to use for a given task. Defaults to pytorch if ambiguous. | def get_default_model(targeted_task: Dict, framework: Optional[str], task_options: Optional[Any]) -> str:
"""
Select a default model to use for a given task. Defaults to pytorch if ambiguous.
Args:
targeted_task (:obj:`Dict` ):
Dictionary representing the given task, that should contain default models
framework (:obj:`str`, None)
"pt", "tf" or None, representing a specific framework if it was specified, or None if we don't know yet.
task_options (:obj:`Any`, None)
Any further value required by the task to get fully specified, for instance (SRC, TGT) languages for
translation task.
Returns
:obj:`str` The model string representing the default model for this pipeline
"""
if is_torch_available() and not is_tf_available():
framework = "pt"
elif is_tf_available() and not is_torch_available():
framework = "tf"
defaults = targeted_task["default"]
if task_options:
if task_options not in defaults:
raise ValueError("The task does not provide any default models for options {}".format(task_options))
default_models = defaults[task_options]["model"]
elif "model" in defaults:
default_models = targeted_task["default"]["model"]
else:
# XXX This error message needs to be updated to be more generic if more tasks are going to become
# parametrized
raise ValueError('The task defaults can\'t be correctly selected. You probably meant "translation_XX_to_YY"')
if framework is None:
framework = "pt"
return default_models[framework] | [
"def",
"get_default_model",
"(",
"targeted_task",
":",
"Dict",
",",
"framework",
":",
"Optional",
"[",
"str",
"]",
",",
"task_options",
":",
"Optional",
"[",
"Any",
"]",
")",
"->",
"str",
":",
"if",
"is_torch_available",
"(",
")",
"and",
"not",
"is_tf_available",
"(",
")",
":",
"framework",
"=",
"\"pt\"",
"elif",
"is_tf_available",
"(",
")",
"and",
"not",
"is_torch_available",
"(",
")",
":",
"framework",
"=",
"\"tf\"",
"defaults",
"=",
"targeted_task",
"[",
"\"default\"",
"]",
"if",
"task_options",
":",
"if",
"task_options",
"not",
"in",
"defaults",
":",
"raise",
"ValueError",
"(",
"\"The task does not provide any default models for options {}\"",
".",
"format",
"(",
"task_options",
")",
")",
"default_models",
"=",
"defaults",
"[",
"task_options",
"]",
"[",
"\"model\"",
"]",
"elif",
"\"model\"",
"in",
"defaults",
":",
"default_models",
"=",
"targeted_task",
"[",
"\"default\"",
"]",
"[",
"\"model\"",
"]",
"else",
":",
"# XXX This error message needs to be updated to be more generic if more tasks are going to become",
"# parametrized",
"raise",
"ValueError",
"(",
"'The task defaults can\\'t be correctly selected. You probably meant \"translation_XX_to_YY\"'",
")",
"if",
"framework",
"is",
"None",
":",
"framework",
"=",
"\"pt\"",
"return",
"default_models",
"[",
"framework",
"]"
] | [
132,
0
] | [
171,
36
] | python | en | ['en', 'error', 'th'] | False |
PipelineDataFormat.save | (self, data: Union[dict, List[dict]]) |
Save the provided data object with the representation for the current
:class:`~transformers.pipelines.PipelineDataFormat`.
Args:
data (:obj:`dict` or list of :obj:`dict`): The data to store.
|
Save the provided data object with the representation for the current
:class:`~transformers.pipelines.PipelineDataFormat`. | def save(self, data: Union[dict, List[dict]]):
"""
Save the provided data object with the representation for the current
:class:`~transformers.pipelines.PipelineDataFormat`.
Args:
data (:obj:`dict` or list of :obj:`dict`): The data to store.
"""
raise NotImplementedError() | [
"def",
"save",
"(",
"self",
",",
"data",
":",
"Union",
"[",
"dict",
",",
"List",
"[",
"dict",
"]",
"]",
")",
":",
"raise",
"NotImplementedError",
"(",
")"
] | [
251,
4
] | [
259,
35
] | python | en | ['en', 'error', 'th'] | False |
PipelineDataFormat.save_binary | (self, data: Union[dict, List[dict]]) |
Save the provided data object as a pickle-formatted binary data on the disk.
Args:
data (:obj:`dict` or list of :obj:`dict`): The data to store.
Returns:
:obj:`str`: Path where the data has been saved.
|
Save the provided data object as a pickle-formatted binary data on the disk. | def save_binary(self, data: Union[dict, List[dict]]) -> str:
"""
Save the provided data object as a pickle-formatted binary data on the disk.
Args:
data (:obj:`dict` or list of :obj:`dict`): The data to store.
Returns:
:obj:`str`: Path where the data has been saved.
"""
path, _ = os.path.splitext(self.output_path)
binary_path = os.path.extsep.join((path, "pickle"))
with open(binary_path, "wb+") as f_output:
pickle.dump(data, f_output)
return binary_path | [
"def",
"save_binary",
"(",
"self",
",",
"data",
":",
"Union",
"[",
"dict",
",",
"List",
"[",
"dict",
"]",
"]",
")",
"->",
"str",
":",
"path",
",",
"_",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"self",
".",
"output_path",
")",
"binary_path",
"=",
"os",
".",
"path",
".",
"extsep",
".",
"join",
"(",
"(",
"path",
",",
"\"pickle\"",
")",
")",
"with",
"open",
"(",
"binary_path",
",",
"\"wb+\"",
")",
"as",
"f_output",
":",
"pickle",
".",
"dump",
"(",
"data",
",",
"f_output",
")",
"return",
"binary_path"
] | [
261,
4
] | [
277,
26
] | python | en | ['en', 'error', 'th'] | False |
PipelineDataFormat.from_str | (
format: str,
output_path: Optional[str],
input_path: Optional[str],
column: Optional[str],
overwrite=False,
) |
Creates an instance of the right subclass of :class:`~transformers.pipelines.PipelineDataFormat` depending on
:obj:`format`.
Args:
format: (:obj:`str`):
The format of the desired pipeline. Acceptable values are :obj:`"json"`, :obj:`"csv"` or :obj:`"pipe"`.
output_path (:obj:`str`, `optional`):
Where to save the outgoing data.
input_path (:obj:`str`, `optional`):
Where to look for the input data.
column (:obj:`str`, `optional`):
The column to read.
overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to overwrite the :obj:`output_path`.
Returns:
:class:`~transformers.pipelines.PipelineDataFormat`: The proper data format.
|
Creates an instance of the right subclass of :class:`~transformers.pipelines.PipelineDataFormat` depending on
:obj:`format`. | def from_str(
format: str,
output_path: Optional[str],
input_path: Optional[str],
column: Optional[str],
overwrite=False,
) -> "PipelineDataFormat":
"""
Creates an instance of the right subclass of :class:`~transformers.pipelines.PipelineDataFormat` depending on
:obj:`format`.
Args:
format: (:obj:`str`):
The format of the desired pipeline. Acceptable values are :obj:`"json"`, :obj:`"csv"` or :obj:`"pipe"`.
output_path (:obj:`str`, `optional`):
Where to save the outgoing data.
input_path (:obj:`str`, `optional`):
Where to look for the input data.
column (:obj:`str`, `optional`):
The column to read.
overwrite (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to overwrite the :obj:`output_path`.
Returns:
:class:`~transformers.pipelines.PipelineDataFormat`: The proper data format.
"""
if format == "json":
return JsonPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
elif format == "csv":
return CsvPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
elif format == "pipe":
return PipedPipelineDataFormat(output_path, input_path, column, overwrite=overwrite)
else:
raise KeyError("Unknown reader {} (Available reader are json/csv/pipe)".format(format)) | [
"def",
"from_str",
"(",
"format",
":",
"str",
",",
"output_path",
":",
"Optional",
"[",
"str",
"]",
",",
"input_path",
":",
"Optional",
"[",
"str",
"]",
",",
"column",
":",
"Optional",
"[",
"str",
"]",
",",
"overwrite",
"=",
"False",
",",
")",
"->",
"\"PipelineDataFormat\"",
":",
"if",
"format",
"==",
"\"json\"",
":",
"return",
"JsonPipelineDataFormat",
"(",
"output_path",
",",
"input_path",
",",
"column",
",",
"overwrite",
"=",
"overwrite",
")",
"elif",
"format",
"==",
"\"csv\"",
":",
"return",
"CsvPipelineDataFormat",
"(",
"output_path",
",",
"input_path",
",",
"column",
",",
"overwrite",
"=",
"overwrite",
")",
"elif",
"format",
"==",
"\"pipe\"",
":",
"return",
"PipedPipelineDataFormat",
"(",
"output_path",
",",
"input_path",
",",
"column",
",",
"overwrite",
"=",
"overwrite",
")",
"else",
":",
"raise",
"KeyError",
"(",
"\"Unknown reader {} (Available reader are json/csv/pipe)\"",
".",
"format",
"(",
"format",
")",
")"
] | [
280,
4
] | [
313,
99
] | python | en | ['en', 'error', 'th'] | False |
CsvPipelineDataFormat.save | (self, data: List[dict]) |
Save the provided data object with the representation for the current
:class:`~transformers.pipelines.PipelineDataFormat`.
Args:
data (:obj:`List[dict]`): The data to store.
|
Save the provided data object with the representation for the current
:class:`~transformers.pipelines.PipelineDataFormat`. | def save(self, data: List[dict]):
"""
Save the provided data object with the representation for the current
:class:`~transformers.pipelines.PipelineDataFormat`.
Args:
data (:obj:`List[dict]`): The data to store.
"""
with open(self.output_path, "w") as f:
if len(data) > 0:
writer = csv.DictWriter(f, list(data[0].keys()))
writer.writeheader()
writer.writerows(data) | [
"def",
"save",
"(",
"self",
",",
"data",
":",
"List",
"[",
"dict",
"]",
")",
":",
"with",
"open",
"(",
"self",
".",
"output_path",
",",
"\"w\"",
")",
"as",
"f",
":",
"if",
"len",
"(",
"data",
")",
">",
"0",
":",
"writer",
"=",
"csv",
".",
"DictWriter",
"(",
"f",
",",
"list",
"(",
"data",
"[",
"0",
"]",
".",
"keys",
"(",
")",
")",
")",
"writer",
".",
"writeheader",
"(",
")",
"writer",
".",
"writerows",
"(",
"data",
")"
] | [
346,
4
] | [
358,
38
] | python | en | ['en', 'error', 'th'] | False |
JsonPipelineDataFormat.save | (self, data: dict) |
Save the provided data object in a json file.
Args:
data (:obj:`dict`): The data to store.
|
Save the provided data object in a json file. | def save(self, data: dict):
"""
Save the provided data object in a json file.
Args:
data (:obj:`dict`): The data to store.
"""
with open(self.output_path, "w") as f:
json.dump(data, f) | [
"def",
"save",
"(",
"self",
",",
"data",
":",
"dict",
")",
":",
"with",
"open",
"(",
"self",
".",
"output_path",
",",
"\"w\"",
")",
"as",
"f",
":",
"json",
".",
"dump",
"(",
"data",
",",
"f",
")"
] | [
392,
4
] | [
400,
30
] | python | en | ['en', 'error', 'th'] | False |
PipedPipelineDataFormat.save | (self, data: dict) |
Print the data.
Args:
data (:obj:`dict`): The data to store.
|
Print the data. | def save(self, data: dict):
"""
Print the data.
Args:
data (:obj:`dict`): The data to store.
"""
print(data) | [
"def",
"save",
"(",
"self",
",",
"data",
":",
"dict",
")",
":",
"print",
"(",
"data",
")"
] | [
433,
4
] | [
440,
19
] | python | en | ['en', 'error', 'th'] | False |
async_setup | (hass) | Set up the Automation config API. | Set up the Automation config API. | async def async_setup(hass):
"""Set up the Automation config API."""
async def hook(action, config_key):
"""post_write_hook for Config View that reloads automations."""
await hass.services.async_call(DOMAIN, SERVICE_RELOAD)
if action != ACTION_DELETE:
return
ent_reg = await entity_registry.async_get_registry(hass)
entity_id = ent_reg.async_get_entity_id(DOMAIN, DOMAIN, config_key)
if entity_id is None:
return
ent_reg.async_remove(entity_id)
hass.http.register_view(
EditAutomationConfigView(
DOMAIN,
"config",
AUTOMATION_CONFIG_PATH,
cv.string,
PLATFORM_SCHEMA,
post_write_hook=hook,
data_validator=async_validate_config_item,
)
)
return True | [
"async",
"def",
"async_setup",
"(",
"hass",
")",
":",
"async",
"def",
"hook",
"(",
"action",
",",
"config_key",
")",
":",
"\"\"\"post_write_hook for Config View that reloads automations.\"\"\"",
"await",
"hass",
".",
"services",
".",
"async_call",
"(",
"DOMAIN",
",",
"SERVICE_RELOAD",
")",
"if",
"action",
"!=",
"ACTION_DELETE",
":",
"return",
"ent_reg",
"=",
"await",
"entity_registry",
".",
"async_get_registry",
"(",
"hass",
")",
"entity_id",
"=",
"ent_reg",
".",
"async_get_entity_id",
"(",
"DOMAIN",
",",
"DOMAIN",
",",
"config_key",
")",
"if",
"entity_id",
"is",
"None",
":",
"return",
"ent_reg",
".",
"async_remove",
"(",
"entity_id",
")",
"hass",
".",
"http",
".",
"register_view",
"(",
"EditAutomationConfigView",
"(",
"DOMAIN",
",",
"\"config\"",
",",
"AUTOMATION_CONFIG_PATH",
",",
"cv",
".",
"string",
",",
"PLATFORM_SCHEMA",
",",
"post_write_hook",
"=",
"hook",
",",
"data_validator",
"=",
"async_validate_config_item",
",",
")",
")",
"return",
"True"
] | [
16,
0
] | [
46,
15
] | python | en | ['en', 'en', 'en'] | True |
async_describe_on_off_states | (
hass: HomeAssistantType, registry: GroupIntegrationRegistry
) | Describe group on off states. | Describe group on off states. | def async_describe_on_off_states(
hass: HomeAssistantType, registry: GroupIntegrationRegistry
) -> None:
"""Describe group on off states."""
registry.on_off_states(
{STATE_CLEANING, STATE_ON, STATE_RETURNING, STATE_ERROR}, STATE_OFF
) | [
"def",
"async_describe_on_off_states",
"(",
"hass",
":",
"HomeAssistantType",
",",
"registry",
":",
"GroupIntegrationRegistry",
")",
"->",
"None",
":",
"registry",
".",
"on_off_states",
"(",
"{",
"STATE_CLEANING",
",",
"STATE_ON",
",",
"STATE_RETURNING",
",",
"STATE_ERROR",
"}",
",",
"STATE_OFF",
")"
] | [
12,
0
] | [
18,
5
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.__init__ | (self, hass, config_entry) | Initialize the system. | Initialize the system. | def __init__(self, hass, config_entry):
"""Initialize the system."""
self.config_entry = config_entry
self.hass = hass
self.roonapi = None
self.all_player_ids = set()
self.all_playlists = []
self.offline_devices = set()
self._exit = False
self._roon_name_by_id = {} | [
"def",
"__init__",
"(",
"self",
",",
"hass",
",",
"config_entry",
")",
":",
"self",
".",
"config_entry",
"=",
"config_entry",
"self",
".",
"hass",
"=",
"hass",
"self",
".",
"roonapi",
"=",
"None",
"self",
".",
"all_player_ids",
"=",
"set",
"(",
")",
"self",
".",
"all_playlists",
"=",
"[",
"]",
"self",
".",
"offline_devices",
"=",
"set",
"(",
")",
"self",
".",
"_exit",
"=",
"False",
"self",
".",
"_roon_name_by_id",
"=",
"{",
"}"
] | [
19,
4
] | [
28,
34
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.host | (self) | Return the host of this server. | Return the host of this server. | def host(self):
"""Return the host of this server."""
return self.config_entry.data[CONF_HOST] | [
"def",
"host",
"(",
"self",
")",
":",
"return",
"self",
".",
"config_entry",
".",
"data",
"[",
"CONF_HOST",
"]"
] | [
31,
4
] | [
33,
48
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.async_setup | (self, tries=0) | Set up a roon server based on host parameter. | Set up a roon server based on host parameter. | async def async_setup(self, tries=0):
"""Set up a roon server based on host parameter."""
host = self.host
hass = self.hass
token = self.config_entry.data[CONF_API_KEY]
_LOGGER.debug("async_setup: %s %s", token, host)
self.roonapi = RoonApi(ROON_APPINFO, token, host, blocking_init=False)
self.roonapi.register_state_callback(
self.roonapi_state_callback, event_filter=["zones_changed"]
)
# initialize media_player platform
hass.async_create_task(
hass.config_entries.async_forward_entry_setup(
self.config_entry, "media_player"
)
)
# Initialize Roon background polling
asyncio.create_task(self.async_do_loop())
return True | [
"async",
"def",
"async_setup",
"(",
"self",
",",
"tries",
"=",
"0",
")",
":",
"host",
"=",
"self",
".",
"host",
"hass",
"=",
"self",
".",
"hass",
"token",
"=",
"self",
".",
"config_entry",
".",
"data",
"[",
"CONF_API_KEY",
"]",
"_LOGGER",
".",
"debug",
"(",
"\"async_setup: %s %s\"",
",",
"token",
",",
"host",
")",
"self",
".",
"roonapi",
"=",
"RoonApi",
"(",
"ROON_APPINFO",
",",
"token",
",",
"host",
",",
"blocking_init",
"=",
"False",
")",
"self",
".",
"roonapi",
".",
"register_state_callback",
"(",
"self",
".",
"roonapi_state_callback",
",",
"event_filter",
"=",
"[",
"\"zones_changed\"",
"]",
")",
"# initialize media_player platform",
"hass",
".",
"async_create_task",
"(",
"hass",
".",
"config_entries",
".",
"async_forward_entry_setup",
"(",
"self",
".",
"config_entry",
",",
"\"media_player\"",
")",
")",
"# Initialize Roon background polling",
"asyncio",
".",
"create_task",
"(",
"self",
".",
"async_do_loop",
"(",
")",
")",
"return",
"True"
] | [
35,
4
] | [
56,
19
] | python | en | ['en', 'da', 'en'] | True |
RoonServer.async_reset | (self) | Reset this connection to default state.
Will cancel any scheduled setup retry and will unload
the config entry.
| Reset this connection to default state. | async def async_reset(self):
"""Reset this connection to default state.
Will cancel any scheduled setup retry and will unload
the config entry.
"""
self.stop_roon()
return True | [
"async",
"def",
"async_reset",
"(",
"self",
")",
":",
"self",
".",
"stop_roon",
"(",
")",
"return",
"True"
] | [
58,
4
] | [
65,
19
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.zones | (self) | Return list of zones. | Return list of zones. | def zones(self):
"""Return list of zones."""
return self.roonapi.zones | [
"def",
"zones",
"(",
"self",
")",
":",
"return",
"self",
".",
"roonapi",
".",
"zones"
] | [
68,
4
] | [
70,
33
] | python | en | ['en', 'nl', 'en'] | True |
RoonServer.add_player_id | (self, entity_id, roon_name) | Register a roon player. | Register a roon player. | def add_player_id(self, entity_id, roon_name):
"""Register a roon player."""
self._roon_name_by_id[entity_id] = roon_name | [
"def",
"add_player_id",
"(",
"self",
",",
"entity_id",
",",
"roon_name",
")",
":",
"self",
".",
"_roon_name_by_id",
"[",
"entity_id",
"]",
"=",
"roon_name"
] | [
72,
4
] | [
74,
52
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.roon_name | (self, entity_id) | Get the name of the roon player from entity_id. | Get the name of the roon player from entity_id. | def roon_name(self, entity_id):
"""Get the name of the roon player from entity_id."""
return self._roon_name_by_id.get(entity_id) | [
"def",
"roon_name",
"(",
"self",
",",
"entity_id",
")",
":",
"return",
"self",
".",
"_roon_name_by_id",
".",
"get",
"(",
"entity_id",
")"
] | [
76,
4
] | [
78,
51
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.stop_roon | (self) | Stop background worker. | Stop background worker. | def stop_roon(self):
"""Stop background worker."""
self.roonapi.stop()
self._exit = True | [
"def",
"stop_roon",
"(",
"self",
")",
":",
"self",
".",
"roonapi",
".",
"stop",
"(",
")",
"self",
".",
"_exit",
"=",
"True"
] | [
80,
4
] | [
83,
25
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.roonapi_state_callback | (self, event, changed_zones) | Callbacks from the roon api websockets. | Callbacks from the roon api websockets. | def roonapi_state_callback(self, event, changed_zones):
"""Callbacks from the roon api websockets."""
self.hass.add_job(self.async_update_changed_players(changed_zones)) | [
"def",
"roonapi_state_callback",
"(",
"self",
",",
"event",
",",
"changed_zones",
")",
":",
"self",
".",
"hass",
".",
"add_job",
"(",
"self",
".",
"async_update_changed_players",
"(",
"changed_zones",
")",
")"
] | [
85,
4
] | [
87,
75
] | python | en | ['en', 'mg', 'en'] | True |
RoonServer.async_do_loop | (self) | Background work loop. | Background work loop. | async def async_do_loop(self):
"""Background work loop."""
self._exit = False
while not self._exit:
await self.async_update_players()
# await self.async_update_playlists()
await asyncio.sleep(FULL_SYNC_INTERVAL) | [
"async",
"def",
"async_do_loop",
"(",
"self",
")",
":",
"self",
".",
"_exit",
"=",
"False",
"while",
"not",
"self",
".",
"_exit",
":",
"await",
"self",
".",
"async_update_players",
"(",
")",
"# await self.async_update_playlists()",
"await",
"asyncio",
".",
"sleep",
"(",
"FULL_SYNC_INTERVAL",
")"
] | [
89,
4
] | [
95,
51
] | python | en | ['en', 'af', 'en'] | True |
RoonServer.async_update_changed_players | (self, changed_zones_ids) | Update the players which were reported as changed by the Roon API. | Update the players which were reported as changed by the Roon API. | async def async_update_changed_players(self, changed_zones_ids):
"""Update the players which were reported as changed by the Roon API."""
for zone_id in changed_zones_ids:
if zone_id not in self.roonapi.zones:
# device was removed ?
continue
zone = self.roonapi.zones[zone_id]
for device in zone["outputs"]:
dev_name = device["display_name"]
if dev_name == "Unnamed" or not dev_name:
# ignore unnamed devices
continue
player_data = await self.async_create_player_data(zone, device)
dev_id = player_data["dev_id"]
player_data["is_available"] = True
if dev_id in self.offline_devices:
# player back online
self.offline_devices.remove(dev_id)
async_dispatcher_send(self.hass, "roon_media_player", player_data)
self.all_player_ids.add(dev_id) | [
"async",
"def",
"async_update_changed_players",
"(",
"self",
",",
"changed_zones_ids",
")",
":",
"for",
"zone_id",
"in",
"changed_zones_ids",
":",
"if",
"zone_id",
"not",
"in",
"self",
".",
"roonapi",
".",
"zones",
":",
"# device was removed ?",
"continue",
"zone",
"=",
"self",
".",
"roonapi",
".",
"zones",
"[",
"zone_id",
"]",
"for",
"device",
"in",
"zone",
"[",
"\"outputs\"",
"]",
":",
"dev_name",
"=",
"device",
"[",
"\"display_name\"",
"]",
"if",
"dev_name",
"==",
"\"Unnamed\"",
"or",
"not",
"dev_name",
":",
"# ignore unnamed devices",
"continue",
"player_data",
"=",
"await",
"self",
".",
"async_create_player_data",
"(",
"zone",
",",
"device",
")",
"dev_id",
"=",
"player_data",
"[",
"\"dev_id\"",
"]",
"player_data",
"[",
"\"is_available\"",
"]",
"=",
"True",
"if",
"dev_id",
"in",
"self",
".",
"offline_devices",
":",
"# player back online",
"self",
".",
"offline_devices",
".",
"remove",
"(",
"dev_id",
")",
"async_dispatcher_send",
"(",
"self",
".",
"hass",
",",
"\"roon_media_player\"",
",",
"player_data",
")",
"self",
".",
"all_player_ids",
".",
"add",
"(",
"dev_id",
")"
] | [
97,
4
] | [
116,
47
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.async_update_players | (self) | Periodic full scan of all devices. | Periodic full scan of all devices. | async def async_update_players(self):
"""Periodic full scan of all devices."""
zone_ids = self.roonapi.zones.keys()
await self.async_update_changed_players(zone_ids)
# check for any removed devices
all_devs = {}
for zone in self.roonapi.zones.values():
for device in zone["outputs"]:
player_data = await self.async_create_player_data(zone, device)
dev_id = player_data["dev_id"]
all_devs[dev_id] = player_data
for dev_id in self.all_player_ids:
if dev_id in all_devs:
continue
# player was removed!
player_data = {"dev_id": dev_id}
player_data["is_available"] = False
async_dispatcher_send(self.hass, "roon_media_player", player_data)
self.offline_devices.add(dev_id) | [
"async",
"def",
"async_update_players",
"(",
"self",
")",
":",
"zone_ids",
"=",
"self",
".",
"roonapi",
".",
"zones",
".",
"keys",
"(",
")",
"await",
"self",
".",
"async_update_changed_players",
"(",
"zone_ids",
")",
"# check for any removed devices",
"all_devs",
"=",
"{",
"}",
"for",
"zone",
"in",
"self",
".",
"roonapi",
".",
"zones",
".",
"values",
"(",
")",
":",
"for",
"device",
"in",
"zone",
"[",
"\"outputs\"",
"]",
":",
"player_data",
"=",
"await",
"self",
".",
"async_create_player_data",
"(",
"zone",
",",
"device",
")",
"dev_id",
"=",
"player_data",
"[",
"\"dev_id\"",
"]",
"all_devs",
"[",
"dev_id",
"]",
"=",
"player_data",
"for",
"dev_id",
"in",
"self",
".",
"all_player_ids",
":",
"if",
"dev_id",
"in",
"all_devs",
":",
"continue",
"# player was removed!",
"player_data",
"=",
"{",
"\"dev_id\"",
":",
"dev_id",
"}",
"player_data",
"[",
"\"is_available\"",
"]",
"=",
"False",
"async_dispatcher_send",
"(",
"self",
".",
"hass",
",",
"\"roon_media_player\"",
",",
"player_data",
")",
"self",
".",
"offline_devices",
".",
"add",
"(",
"dev_id",
")"
] | [
118,
4
] | [
136,
44
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.async_update_playlists | (self) | Store lists in memory with all playlists - could be used by a custom lovelace card. | Store lists in memory with all playlists - could be used by a custom lovelace card. | async def async_update_playlists(self):
"""Store lists in memory with all playlists - could be used by a custom lovelace card."""
all_playlists = []
roon_playlists = self.roonapi.playlists()
if roon_playlists and "items" in roon_playlists:
all_playlists += [item["title"] for item in roon_playlists["items"]]
roon_playlists = self.roonapi.internet_radio()
if roon_playlists and "items" in roon_playlists:
all_playlists += [item["title"] for item in roon_playlists["items"]]
self.all_playlists = all_playlists | [
"async",
"def",
"async_update_playlists",
"(",
"self",
")",
":",
"all_playlists",
"=",
"[",
"]",
"roon_playlists",
"=",
"self",
".",
"roonapi",
".",
"playlists",
"(",
")",
"if",
"roon_playlists",
"and",
"\"items\"",
"in",
"roon_playlists",
":",
"all_playlists",
"+=",
"[",
"item",
"[",
"\"title\"",
"]",
"for",
"item",
"in",
"roon_playlists",
"[",
"\"items\"",
"]",
"]",
"roon_playlists",
"=",
"self",
".",
"roonapi",
".",
"internet_radio",
"(",
")",
"if",
"roon_playlists",
"and",
"\"items\"",
"in",
"roon_playlists",
":",
"all_playlists",
"+=",
"[",
"item",
"[",
"\"title\"",
"]",
"for",
"item",
"in",
"roon_playlists",
"[",
"\"items\"",
"]",
"]",
"self",
".",
"all_playlists",
"=",
"all_playlists"
] | [
138,
4
] | [
147,
42
] | python | en | ['en', 'en', 'en'] | True |
RoonServer.async_create_player_data | (self, zone, output) | Create player object dict by combining zone with output. | Create player object dict by combining zone with output. | async def async_create_player_data(self, zone, output):
"""Create player object dict by combining zone with output."""
new_dict = zone.copy()
new_dict.update(output)
new_dict.pop("outputs")
new_dict["host"] = self.host
new_dict["is_synced"] = len(zone["outputs"]) > 1
new_dict["zone_name"] = zone["display_name"]
new_dict["display_name"] = output["display_name"]
new_dict["last_changed"] = utcnow()
# we don't use the zone_id or output_id for now as unique id as I've seen cases were it changes for some reason
new_dict["dev_id"] = f"roon_{self.host}_{output['display_name']}"
return new_dict | [
"async",
"def",
"async_create_player_data",
"(",
"self",
",",
"zone",
",",
"output",
")",
":",
"new_dict",
"=",
"zone",
".",
"copy",
"(",
")",
"new_dict",
".",
"update",
"(",
"output",
")",
"new_dict",
".",
"pop",
"(",
"\"outputs\"",
")",
"new_dict",
"[",
"\"host\"",
"]",
"=",
"self",
".",
"host",
"new_dict",
"[",
"\"is_synced\"",
"]",
"=",
"len",
"(",
"zone",
"[",
"\"outputs\"",
"]",
")",
">",
"1",
"new_dict",
"[",
"\"zone_name\"",
"]",
"=",
"zone",
"[",
"\"display_name\"",
"]",
"new_dict",
"[",
"\"display_name\"",
"]",
"=",
"output",
"[",
"\"display_name\"",
"]",
"new_dict",
"[",
"\"last_changed\"",
"]",
"=",
"utcnow",
"(",
")",
"# we don't use the zone_id or output_id for now as unique id as I've seen cases were it changes for some reason",
"new_dict",
"[",
"\"dev_id\"",
"]",
"=",
"f\"roon_{self.host}_{output['display_name']}\"",
"return",
"new_dict"
] | [
149,
4
] | [
161,
23
] | python | en | ['en', 'en', 'en'] | True |
_generate_mock_feed_entry | (
external_id,
title,
alert_level,
distance_to_home,
coordinates,
attribution=None,
activity=None,
hazards=None,
) | Construct a mock feed entry for testing purposes. | Construct a mock feed entry for testing purposes. | def _generate_mock_feed_entry(
external_id,
title,
alert_level,
distance_to_home,
coordinates,
attribution=None,
activity=None,
hazards=None,
):
"""Construct a mock feed entry for testing purposes."""
feed_entry = MagicMock()
feed_entry.external_id = external_id
feed_entry.title = title
feed_entry.alert_level = alert_level
feed_entry.distance_to_home = distance_to_home
feed_entry.coordinates = coordinates
feed_entry.attribution = attribution
feed_entry.activity = activity
feed_entry.hazards = hazards
return feed_entry | [
"def",
"_generate_mock_feed_entry",
"(",
"external_id",
",",
"title",
",",
"alert_level",
",",
"distance_to_home",
",",
"coordinates",
",",
"attribution",
"=",
"None",
",",
"activity",
"=",
"None",
",",
"hazards",
"=",
"None",
",",
")",
":",
"feed_entry",
"=",
"MagicMock",
"(",
")",
"feed_entry",
".",
"external_id",
"=",
"external_id",
"feed_entry",
".",
"title",
"=",
"title",
"feed_entry",
".",
"alert_level",
"=",
"alert_level",
"feed_entry",
".",
"distance_to_home",
"=",
"distance_to_home",
"feed_entry",
".",
"coordinates",
"=",
"coordinates",
"feed_entry",
".",
"attribution",
"=",
"attribution",
"feed_entry",
".",
"activity",
"=",
"activity",
"feed_entry",
".",
"hazards",
"=",
"hazards",
"return",
"feed_entry"
] | [
4,
0
] | [
24,
21
] | python | en | ['en', 'en', 'en'] | True |
async_setup | (hass, config) | Set up the ProgettiHWSW Automation component. | Set up the ProgettiHWSW Automation component. | async def async_setup(hass, config):
"""Set up the ProgettiHWSW Automation component."""
hass.data[DOMAIN] = {}
return True | [
"async",
"def",
"async_setup",
"(",
"hass",
",",
"config",
")",
":",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"=",
"{",
"}",
"return",
"True"
] | [
15,
0
] | [
19,
15
] | python | en | ['en', 'en', 'en'] | True |
async_setup_entry | (hass: HomeAssistant, entry: ConfigEntry) | Set up ProgettiHWSW Automation from a config entry. | Set up ProgettiHWSW Automation from a config entry. | async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry):
"""Set up ProgettiHWSW Automation from a config entry."""
hass.data[DOMAIN][entry.entry_id] = ProgettiHWSWAPI(
f'{entry.data["host"]}:{entry.data["port"]}'
)
# Check board validation again to load new values to API.
await hass.data[DOMAIN][entry.entry_id].check_board()
for component in PLATFORMS:
hass.async_create_task(
hass.config_entries.async_forward_entry_setup(entry, component)
)
return True | [
"async",
"def",
"async_setup_entry",
"(",
"hass",
":",
"HomeAssistant",
",",
"entry",
":",
"ConfigEntry",
")",
":",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"entry",
".",
"entry_id",
"]",
"=",
"ProgettiHWSWAPI",
"(",
"f'{entry.data[\"host\"]}:{entry.data[\"port\"]}'",
")",
"# Check board validation again to load new values to API.",
"await",
"hass",
".",
"data",
"[",
"DOMAIN",
"]",
"[",
"entry",
".",
"entry_id",
"]",
".",
"check_board",
"(",
")",
"for",
"component",
"in",
"PLATFORMS",
":",
"hass",
".",
"async_create_task",
"(",
"hass",
".",
"config_entries",
".",
"async_forward_entry_setup",
"(",
"entry",
",",
"component",
")",
")",
"return",
"True"
] | [
22,
0
] | [
37,
15
] | python | en | ['en', 'en', 'en'] | True |
Subsets and Splits