#!/usr/bin/env python # coding=utf-8 # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 """Paired sequences from the Observed Antibody Space database""" import datasets import os import csv _CITATION = """\ @article{Olsen_Boyles_Deane_2022, title={Observed Antibody Space: A diverse database of cleaned, annotated, and translated unpaired and paired antibody sequences}, volume={31}, rights={© 2021 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society.}, ISSN={1469-896X}, DOI={10.1002/pro.4205}, number={1}, journal={Protein Science}, author={Olsen, Tobias H. and Boyles, Fergus and Deane, Charlotte M.}, year={2022}, pages={141–146}, language={en} } """ _DESCRIPTION = """\ Paired heavy and light chain antibody sequences for multiple species. """ _HOMEPAGE = "https://opig.stats.ox.ac.uk/webapps/oas/" _LICENSE = "cc-by-4.0" _BASE_URL = "https://aws-hcls-ml.s3.amazonaws.com/oas-paired-sequence-data/raw/" # _URLS = { # "human": _BASE_URL + "human.tar.gz", # "rat_SD": _BASE_URL + "rat_SD.tar.gz", # "mouse_BALB_c": _BASE_URL + "mouse_BALB_c.tar.gz", # "mouse_C57BL_6": _BASE_URL + "mouse_C57BL_6.tar.gz", # } _FEATURES = datasets.Features( { "sequence_alignment_aa_heavy": datasets.Value("string"), "cdr1_aa_heavy": datasets.Value("string"), "cdr2_aa_heavy": datasets.Value("string"), "cdr3_aa_heavy": datasets.Value("string"), "sequence_alignment_aa_light": datasets.Value("string"), "cdr1_aa_light": datasets.Value("string"), "cdr2_aa_light": datasets.Value("string"), "cdr3_aa_light": datasets.Value("string"), } ) class OasPairedSequenceData(datasets.GeneratorBasedBuilder): """OAS paired sequence data.""" VERSION = datasets.Version("1.2.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="human", version=VERSION, description="human"), datasets.BuilderConfig(name="rat_SD", version=VERSION, description="rat_SD"), datasets.BuilderConfig( name="mouse_BALB_c", version=VERSION, description="mouse_BALB_c" ), datasets.BuilderConfig( name="mouse_C57BL_6", version=VERSION, description="mouse_C57BL_6" ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=_FEATURES, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) # def _split_generators(self, dl_manager): # urls = _URLS[self.config.name] # data_dir = dl_manager.download_and_extract(urls) # return [ # datasets.SplitGenerator( # name=datasets.Split.TRAIN, # gen_kwargs={ # "filepath": os.path.join(data_dir), # "split": "train", # }, # ), # ] # def _generate_examples(self, filepath, split): # table = pd.read_parquet(filepath) # for key, row in enumerate(table.itertuples()): # if key == 0: # continue # yield key, { # "sequence_alignment_aa_heavy": row[1], # "cdr1_aa_heavy": row[2], # "cdr2_aa_heavy": row[3], # "cdr3_aa_heavy": row[4], # "sequence_alignment_aa_light": row[5], # "cdr1_aa_light": row[6], # "cdr2_aa_light": row[7], # "cdr3_aa_light": row[8], # } def _split_generators(self, dl_manager): data_unit_file = os.path.join( os.getcwd(), "data_units", self.config.name + ".txt" ) with open(data_unit_file, "r") as f: urls = [ os.path.join(_BASE_URL, self.config.name, line.strip()) for line in f ] data_files = dl_manager.download_and_extract(urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_files, "split": "train", }, ), ] def _generate_examples(self, filepaths): for filepath in filepaths: with open(filepath, "r") as f: reader = csv.reader(f, delimiter=",") for key, row in enumerate(reader): if key < 2: continue else: yield key - 2, { "sequence_alignment_aa_heavy": row[10], "cdr1_aa_heavy": row[35], "cdr2_aa_heavy": row[39], "cdr3_aa_heavy": row[43], "sequence_alignment_aa_light": row[100], "cdr1_aa_light": row[123], "cdr2_aa_light": row[127], "cdr3_aa_light": row[131], }