plots.py
CHANGED
@@ -2,6 +2,8 @@ import numpy as np
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import pandas as pd
|
4 |
import seaborn as sns
|
|
|
|
|
5 |
|
6 |
sns.set_theme()
|
7 |
|
@@ -64,36 +66,115 @@ def plot_distribution(preds_values, actual_values, mae_values, model_name, thres
|
|
64 |
plt.close()
|
65 |
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
preds_values, actual_values, mae_values = read_results("linear_models/sgd_reg_0.01_0.99.txt")
|
75 |
-
plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], False)
|
76 |
-
|
77 |
-
preds_values, actual_values, mae_values = read_results("oversampled_False_catboost_reg_0.01_0.99.txt")
|
78 |
-
plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], False)
|
79 |
-
|
80 |
-
preds_values, actual_values, mae_values = read_results("linear_models/lasso_0.2_0.8.txt")
|
81 |
-
plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.2, 0.8], False)
|
82 |
|
83 |
-
|
84 |
-
|
|
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
preds_values, actual_values, mae_values = read_results("linear_models/oversampled_sgd_reg_0.01_0.99.txt")
|
90 |
-
plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], True)
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
preds_values, actual_values, mae_values = read_results("linear_models/oversampled_lasso_0.15_0.85.txt")
|
96 |
-
plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.15, 0.85], True)
|
97 |
|
98 |
|
99 |
|
|
|
2 |
import matplotlib.pyplot as plt
|
3 |
import pandas as pd
|
4 |
import seaborn as sns
|
5 |
+
from sklearn.metrics import mean_absolute_error
|
6 |
+
|
7 |
|
8 |
sns.set_theme()
|
9 |
|
|
|
66 |
plt.close()
|
67 |
|
68 |
|
69 |
+
def print_category_errors(actual, preds):
|
70 |
+
for i in range(2):
|
71 |
+
if i == 0:
|
72 |
+
input_type = "BoW"
|
73 |
+
else:
|
74 |
+
input_type = "TF-IDF"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
preds = preds_values[i]
|
77 |
+
actual = actual_values[i]
|
78 |
+
mae = mae_values[i]
|
79 |
|
80 |
+
print(input_type)
|
81 |
+
actual1 = list(actual[np.where(actual < 0.98)])
|
82 |
+
preds1 = list(preds[np.where(actual < 0.98)])
|
83 |
+
print(f"Category 1 MAE: {mean_absolute_error(actual1, preds1):.4f}")
|
84 |
+
print(f"Category 1 correlation: {np.corrcoef(actual1, preds1)[0][1]:.4f}")
|
85 |
+
print()
|
86 |
+
|
87 |
+
actual2 = list(actual[np.where((actual >= 0.98) & (actual < 1.5))])
|
88 |
+
preds2 = list(preds[np.where((actual >= 0.98) & (actual < 1.5))])
|
89 |
+
print(f"Category 2 MAE: {mean_absolute_error(actual2, preds2):.4f}")
|
90 |
+
print(f"Category 2 correlation: {np.corrcoef(actual2, preds2)[0][1]:.4f}")
|
91 |
+
print()
|
92 |
+
|
93 |
+
actual3 = list(actual[np.where((actual >= 1.5) & (actual < 2))])
|
94 |
+
preds3 = list(preds[np.where((actual >= 1.5) & (actual < 2))])
|
95 |
+
print(f"Category 3 MAE: {mean_absolute_error(actual3, preds3):.4f}")
|
96 |
+
print(f"Category 3 correlation: {np.corrcoef(actual3, preds3)[0][1]:.4f}")
|
97 |
+
print()
|
98 |
+
|
99 |
+
actual4 = list(actual[np.where(actual >= 2)])
|
100 |
+
preds4 = list(preds[np.where(actual >= 2)])
|
101 |
+
print(f"Category 4 MAE: {mean_absolute_error(actual4, preds4):.4f}")
|
102 |
+
print(f"Category 4 correlation: {np.corrcoef(actual4, preds4)[0][1]:.4f}")
|
103 |
+
print()
|
104 |
+
print(f"Overall corr: {np.corrcoef(actual, preds)[0][1]:.4f}")
|
105 |
|
|
|
|
|
106 |
|
107 |
+
if __name__ == "__main__":
|
108 |
+
filename = "linear_models/lasso_0.01_0.99.txt"
|
109 |
+
print(filename)
|
110 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
111 |
+
#plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], False)
|
112 |
+
print_category_errors(actual_values, preds_values)
|
113 |
+
print("============================")
|
114 |
+
|
115 |
+
filename = "linear_models/lin_reg_0.01_0.99.txt"
|
116 |
+
print(filename)
|
117 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
118 |
+
#plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], False)
|
119 |
+
print_category_errors(actual_values, preds_values)
|
120 |
+
print("============================")
|
121 |
+
|
122 |
+
filename = "linear_models/sgd_reg_0.01_0.99.txt"
|
123 |
+
print(filename)
|
124 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
125 |
+
#plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], False)
|
126 |
+
print_category_errors(actual_values, preds_values)
|
127 |
+
print("============================")
|
128 |
+
|
129 |
+
filename = "oversampled_False_catboost_reg_0.01_0.99.txt"
|
130 |
+
print(filename)
|
131 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
132 |
+
#plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], False)
|
133 |
+
print_category_errors(actual_values, preds_values)
|
134 |
+
print("============================")
|
135 |
+
|
136 |
+
filename = "linear_models/lasso_0.2_0.8.txt"
|
137 |
+
print(filename)
|
138 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
139 |
+
#plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.2, 0.8], False)
|
140 |
+
print_category_errors(actual_values, preds_values)
|
141 |
+
print("============================")
|
142 |
+
|
143 |
+
filename = "linear_models/oversampled_lin_reg_0.01_0.99.txt"
|
144 |
+
print(filename)
|
145 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
146 |
+
#plot_distribution(preds_values, actual_values, mae_values, "Linear regression", [0.01, 0.99], True)
|
147 |
+
print_category_errors(actual_values, preds_values)
|
148 |
+
print("============================")
|
149 |
+
|
150 |
+
filename = "linear_models/oversampled_lasso_0.01_0.99.txt"
|
151 |
+
print(filename)
|
152 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
153 |
+
#plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.01, 0.99], True)
|
154 |
+
print_category_errors(actual_values, preds_values)
|
155 |
+
print("============================")
|
156 |
+
|
157 |
+
filename = "linear_models/oversampled_sgd_reg_0.01_0.99.txt"
|
158 |
+
print(filename)
|
159 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
160 |
+
#plot_distribution(preds_values, actual_values, mae_values, "SGD Regressor", [0.01, 0.99], True)
|
161 |
+
print_category_errors(actual_values, preds_values)
|
162 |
+
print("============================")
|
163 |
+
|
164 |
+
filename = "oversampled_True_catboost_reg_0.01_0.99.txt"
|
165 |
+
print(filename)
|
166 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
167 |
+
#plot_distribution(preds_values, actual_values, mae_values, "CatBoostRegressor", [0.01, 0.99], True)
|
168 |
+
print_category_errors(actual_values, preds_values)
|
169 |
+
print("============================")
|
170 |
+
|
171 |
+
filename = "linear_models/oversampled_lasso_0.15_0.85.txt"
|
172 |
+
print(filename)
|
173 |
+
preds_values, actual_values, mae_values = read_results(filename)
|
174 |
+
#plot_distribution(preds_values, actual_values, mae_values, "Lasso", [0.15, 0.85], True)
|
175 |
+
print_category_errors(actual_values, preds_values)
|
176 |
+
print("============================")
|
177 |
|
|
|
|
|
178 |
|
179 |
|
180 |
|