add redocred
Browse files- data/dev_revised.json.gz +3 -0
- data/rel_info.json.gz +3 -0
- data/test_revised.json.gz +3 -0
- data/train_revised.json.gz +3 -0
- redocred.py +130 -0
data/dev_revised.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:655cf867f0dac11c81994f9bcd0fa78c0ec02ca55267191e8bb87dc10b2970f3
|
3 |
+
size 632045
|
data/rel_info.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ef27efff537ba89ae66f6f4e60e4908d4df3860a4c2819ea94fa5ed696bdc70
|
3 |
+
size 1037
|
data/test_revised.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6ad71e4f76973314151fe28408fcbb8053593ac165fdf568de523316c1bbdbc
|
3 |
+
size 620220
|
data/train_revised.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4aa312f3a8074373f24a59e230bffdf39e8fb7bbb39ba0f4e7a19fd4d1d3f4f
|
3 |
+
size 3659860
|
redocred.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset"""
|
2 |
+
|
3 |
+
import json
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
_CITATION = """\
|
8 |
+
@inproceedings{yao-etal-2019-docred,
|
9 |
+
title = "{D}oc{RED}: A Large-Scale Document-Level Relation Extraction Dataset",
|
10 |
+
author = "Yao, Yuan and
|
11 |
+
Ye, Deming and
|
12 |
+
Li, Peng and
|
13 |
+
Han, Xu and
|
14 |
+
Lin, Yankai and
|
15 |
+
Liu, Zhenghao and
|
16 |
+
Liu, Zhiyuan and
|
17 |
+
Huang, Lixin and
|
18 |
+
Zhou, Jie and
|
19 |
+
Sun, Maosong",
|
20 |
+
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
|
21 |
+
month = jul,
|
22 |
+
year = "2019",
|
23 |
+
address = "Florence, Italy",
|
24 |
+
publisher = "Association for Computational Linguistics",
|
25 |
+
url = "https://aclanthology.org/P19-1074",
|
26 |
+
doi = "10.18653/v1/P19-1074",
|
27 |
+
pages = "764--777",
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
This repository is copied from https://huggingface.co/datasets/thunlp/docred and changed the files to change Re-DocRED.\
|
33 |
+
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by \
|
34 |
+
existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single \
|
35 |
+
entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed \
|
36 |
+
from Wikipedia and Wikidata with three features:
|
37 |
+
- DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text.
|
38 |
+
- DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document.
|
39 |
+
- Along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios.
|
40 |
+
"""
|
41 |
+
|
42 |
+
_URLS = {
|
43 |
+
"dev": "data/dev_revised.json.gz",
|
44 |
+
"train": "data/train_revised.json.gz",
|
45 |
+
"test": "data/test.json.gz",
|
46 |
+
"rel_info": "data/rel_info.json.gz",
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
class DocRed(datasets.GeneratorBasedBuilder):
|
51 |
+
"""DocRED: A Large-Scale Document-Level Relation Extraction Dataset"""
|
52 |
+
|
53 |
+
def _info(self):
|
54 |
+
return datasets.DatasetInfo(
|
55 |
+
description=_DESCRIPTION,
|
56 |
+
features=datasets.Features(
|
57 |
+
{
|
58 |
+
"title": datasets.Value("string"),
|
59 |
+
"sents": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
|
60 |
+
"vertexSet": [
|
61 |
+
[
|
62 |
+
{
|
63 |
+
"name": datasets.Value("string"),
|
64 |
+
"sent_id": datasets.Value("int32"),
|
65 |
+
"pos": datasets.features.Sequence(datasets.Value("int32")),
|
66 |
+
"type": datasets.Value("string"),
|
67 |
+
}
|
68 |
+
]
|
69 |
+
],
|
70 |
+
"labels": datasets.features.Sequence(
|
71 |
+
{
|
72 |
+
"head": datasets.Value("int32"),
|
73 |
+
"tail": datasets.Value("int32"),
|
74 |
+
"relation_id": datasets.Value("string"),
|
75 |
+
"relation_text": datasets.Value("string"),
|
76 |
+
"evidence": datasets.features.Sequence(datasets.Value("int32")),
|
77 |
+
}
|
78 |
+
),
|
79 |
+
}
|
80 |
+
),
|
81 |
+
supervised_keys=None,
|
82 |
+
homepage="https://github.com/thunlp/DocRED",
|
83 |
+
citation=_CITATION,
|
84 |
+
)
|
85 |
+
|
86 |
+
def _split_generators(self, dl_manager):
|
87 |
+
downloads = dl_manager.download_and_extract(_URLS)
|
88 |
+
return [
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.VALIDATION,
|
91 |
+
gen_kwargs={"filepath": downloads["dev"], "rel_info": downloads["rel_info"]},
|
92 |
+
),
|
93 |
+
datasets.SplitGenerator(
|
94 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": downloads["test"], "rel_info": downloads["rel_info"]}
|
95 |
+
),
|
96 |
+
datasets.SplitGenerator(
|
97 |
+
name="train_annotated",
|
98 |
+
gen_kwargs={"filepath": downloads["train_annotated"], "rel_info": downloads["rel_info"]},
|
99 |
+
),
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name="train_distant",
|
102 |
+
gen_kwargs={"filepath": downloads["train_distant"], "rel_info": downloads["rel_info"]},
|
103 |
+
),
|
104 |
+
]
|
105 |
+
|
106 |
+
def _generate_examples(self, filepath, rel_info):
|
107 |
+
"""Generate DocRED examples."""
|
108 |
+
|
109 |
+
with open(rel_info, encoding="utf-8") as f:
|
110 |
+
relation_name_map = json.load(f)
|
111 |
+
with open(filepath, encoding="utf-8") as f:
|
112 |
+
data = json.load(f)
|
113 |
+
|
114 |
+
for idx, example in enumerate(data):
|
115 |
+
|
116 |
+
# Test set has no labels - Results need to be uploaded to Codalab
|
117 |
+
if "labels" not in example.keys():
|
118 |
+
example["labels"] = []
|
119 |
+
|
120 |
+
for label in example["labels"]:
|
121 |
+
# Rename and include full relation names
|
122 |
+
label["relation_text"] = relation_name_map[label["r"]]
|
123 |
+
label["relation_id"] = label["r"]
|
124 |
+
label["head"] = label["h"]
|
125 |
+
label["tail"] = label["t"]
|
126 |
+
del label["r"]
|
127 |
+
del label["h"]
|
128 |
+
del label["t"]
|
129 |
+
|
130 |
+
yield idx, example
|