import sqlite3 import pandas as pd import matplotlib.pyplot as plt # Connect to the SQLite database conn = sqlite3.connect("./wikipedia_simple_20240720.db") # Query to get the length of each section's text query = """ SELECT LENGTH(text) as text_length FROM article_sections; """ # Execute the query and load the data into a DataFrame df = pd.read_sql_query(query, conn) # Calculate statistics avg_length = df['text_length'].mean() min_length = df['text_length'].min() max_length = df['text_length'].max() quartiles = df['text_length'].quantile([0.25, 0.5, 0.75]) print(f"Average section text length: {avg_length}") print(f"Minimum section text length: {min_length}") print(f"Maximum section text length: {max_length}") print(f"Quartiles:\n{quartiles}") # Plot the distribution of section text lengths, focusing on a more relevant range plt.figure(figsize=(10, 6)) plt.hist(df['text_length'], bins=50, range=(0, 2000), color='skyblue', edgecolor='black') plt.title('Distribution of Section Text Lengths (0-2000 chars)') plt.xlabel('Text Length') plt.ylabel('Frequency') plt.show() # Plot a box plot to better visualize the distribution plt.figure(figsize=(10, 6)) plt.boxplot(df['text_length'], vert=False) plt.title('Box Plot of Section Text Lengths') plt.xlabel('Text Length') plt.show() # Close the connection conn.close()