# import subprocess import coremltools as ct from transformers import AutoTokenizer import numpy as np model = ct.models.CompiledMLModel('./msmarco_distilbert_base_tas_b_512_single_quantized.mlmodelc') tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/msmarco-distilbert-base-tas-b") def tokenize(text): return tokenizer( text, add_special_tokens=True, # Adds [CLS] and [SEP] max_length=512, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='np' ) def embed(text): result = tokenize(text) token_ids = result['input_ids'].astype(np.float32)#.flatten().reshape(1, 512) mask = result['attention_mask'].astype(np.float32)#.flatten().reshape(1, 512) print(f"Tokens: {token_ids}") print(f"Mask: {mask}") predictions = model.predict({"input_ids": token_ids, "attention_mask": mask}) return predictions['embeddings'][0] string = "test: hello, world! calling swift executable from python, what will we think of next?" print(f"🔮 Embedding string: {string}") embeddings = embed(string) print(f"🔮 Embeddings (0-10): {embeddings[:10]}")