File size: 6,084 Bytes
16dcd38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from geco_data_generator import basefunctions, attrgenfunct, contdepfunct, generator, corruptor
import random
random.seed(42)
# Set the Unicode encoding for this data generation project. This needs to be
# changed to another encoding for different Unicode character sets.
# Valid encoding strings are listed here:
# http://docs.python.org/library/codecs.html#standard-encodings
#
unicode_encoding_used = 'cp932'
# The name of the record identifier attribute (unique value for each record).
# This name cannot be given as name to any other attribute that is generated.
#
rec_id_attr_name = 'rec-id'
# Set the file name of the data set to be generated (this will be a comma
# separated values, CSV, file).
#
out_file_name = 'example-data-japanese.csv'
# Set how many original and how many duplicate records are to be generated.
#
num_org_rec = 10000
num_dup_rec = 10000
# Set the maximum number of duplicate records can be generated per original
# record.
#
max_duplicate_per_record = 3
# Set the probability distribution used to create the duplicate records for one
# original record (possible values are: 'uniform', 'poisson', 'zipf').
#
num_duplicates_distribution = 'zipf'
# Set the maximum number of modification that can be applied to a single
# attribute (field).
#
max_modification_per_attr = 1
# Set the number of modification that are to be applied to a record.
#
num_modification_per_record = 5
# Check if the given the unicode encoding selected is valid.
#
basefunctions.check_unicode_encoding_exists(unicode_encoding_used)
# -----------------------------------------------------------------------------
# Define the attributes to be generated (using methods from the generator.py
# module).
#
surname_attr = generator.GenerateFreqAttribute(
attribute_name='surname',
freq_file_name='surname-freq-japanese.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
credit_card_attr = generator.GenerateFuncAttribute(
attribute_name='credit-card-number', function=attrgenfunct.generate_credit_card_number
)
age_normal_attr = generator.GenerateFuncAttribute(
attribute_name='age',
function=attrgenfunct.generate_normal_age,
parameters=[45, 30, 0, 130],
)
gender_city_comp_attr = generator.GenerateCateCateCompoundAttribute(
categorical1_attribute_name='gender',
categorical2_attribute_name='city',
lookup_file_name='gender-city-japanese.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
# -----------------------------------------------------------------------------
# Define how the generated records are to be corrupted (using methods from
# the corruptor.py module).
# For a value edit corruptor, the sum or the four probabilities given must
# be 1.0.
#
surname_misspell_corruptor = corruptor.CorruptCategoricalValue(
lookup_file_name='surname-misspell-japanese.csv',
has_header_line=False,
unicode_encoding=unicode_encoding_used,
)
edit_corruptor = corruptor.CorruptValueEdit(
position_function=corruptor.position_mod_normal,
char_set_funct=basefunctions.char_set_ascii,
insert_prob=0.0,
delete_prob=0.0,
substitute_prob=0.6,
transpose_prob=0.4,
)
missing_val_corruptor = corruptor.CorruptMissingValue()
# -----------------------------------------------------------------------------
# Define the attributes to be generated for this data set, and the data set
# itself.
#
attr_name_list = ['surname', 'age', 'gender', 'city', 'credit-card-number']
attr_data_list = [surname_attr, credit_card_attr, age_normal_attr, gender_city_comp_attr]
# Nothing to change here - set-up the data set generation object.
#
test_data_generator = generator.GenerateDataSet(
output_file_name=out_file_name,
write_header_line=True,
rec_id_attr_name=rec_id_attr_name,
number_of_records=num_org_rec,
attribute_name_list=attr_name_list,
attribute_data_list=attr_data_list,
unicode_encoding=unicode_encoding_used,
)
# Define the probability distribution of how likely an attribute will be
# selected for a modification.
# Each of the given probability values must be between 0 and 1, and the sum of
# them must be 1.0.
# If a probability is set to 0 for a certain attribute, then no modification
# will be applied on this attribute.
#
attr_mod_prob_dictionary = {
'surname': 0.5,
'age': 0.2,
'gender': 0.05,
'city': 0.05,
'credit-card-number': 0.2,
}
# Define the actual corruption (modification) methods that will be applied on
# the different attributes.
# For each attribute, the sum of probabilities given must sum to 1.0.
#
attr_mod_data_dictionary = {
'surname': [(0.9, surname_misspell_corruptor), (0.1, missing_val_corruptor)],
'age': [(0.1, missing_val_corruptor), (0.9, edit_corruptor)],
'gender': [(1.0, missing_val_corruptor)],
'city': [(1.0, missing_val_corruptor)],
'credit-card-number': [(0.1, missing_val_corruptor), (0.9, edit_corruptor)],
}
# Nothing to change here - set-up the data set corruption object
#
test_data_corruptor = corruptor.CorruptDataSet(
number_of_org_records=num_org_rec,
number_of_mod_records=num_dup_rec,
attribute_name_list=attr_name_list,
max_num_dup_per_rec=max_duplicate_per_record,
num_dup_dist=num_duplicates_distribution,
max_num_mod_per_attr=max_modification_per_attr,
num_mod_per_rec=num_modification_per_record,
attr_mod_prob_dict=attr_mod_prob_dictionary,
attr_mod_data_dict=attr_mod_data_dictionary,
)
# =============================================================================
# No need to change anything below here
# Start the generation process
#
rec_dict = test_data_generator.generate()
assert len(rec_dict) == num_org_rec # Check the number of generated records
# Corrupt (modify) the original records into duplicate records
#
rec_dict = test_data_corruptor.corrupt_records(rec_dict)
assert len(rec_dict) == num_org_rec + num_dup_rec # Check total number of records
# Write generate data into a file
#
test_data_generator.write()
|