File size: 6,068 Bytes
2267d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
"""Make CSVs for numerical data.

Some data can be slow to process and it is better to write them into a CSV file before
plotting, so that we don't need to wait for a long time during plotting. Data included:

- Energy result from neural network and ED with different number of electrons in 1/3.
- Ground state energy, quasiparticle/quasihole energy, electron population on the LLL,
  and overlap with the Laughlin wavefunction with different kappa in 1/3 filling.
"""

import os
from pathlib import Path

os.environ["JAX_PLATFORMS"] = "cpu"


import numpy as np
import pandas as pd
from deephall.loss import iqr_clip_real
from puwr import tauint
from uncertainties import ufloat, umath

DATA_PATH = Path(__file__).parent / "data"


def correct_energy(kinetic, potential, N, Q, R, nu, q=0, kappa=1):
    # Remove background contribution
    potential -= kappa * (N**2 - q**2) / 2 / R
    # Density correction for potential energy
    energy_in_au = (
        (kinetic - N / 2 * Q / R**2 + potential) * np.sqrt(2 * Q * nu / N) / N
    )
    # Normalize potential in the unit of 1/ell
    energy_in_ell = energy_in_au * R / np.sqrt(Q) / kappa
    return energy_in_ell


def ed_energy(ed_output, N, Q, R, nu, q=0):
    return correct_energy(N / 2, ed_output / 2, N, Q, R, nu, q)


def energy_vs_n():
    data = {"n": [6, 7, 8, 9, 10, 11, 12], "energy": [], "std": [], "ed": []}
    for n in data["n"]:
        flux = 3 * (n - 1)
        netobs_ckpt = DATA_PATH / f"n{n}l{flux}/k1/energy-100k/netobs_ckpt_001999.npz"
        with netobs_ckpt.open("rb") as f, np.load(f) as npf:
            energy = correct_energy(
                npf["values/kinetic"],
                npf["values/potential"],
                *(n, flux / 2, np.sqrt(flux / 2)),
                nu=1 / 3,
            ).real
        mean, std, *_ = tauint([[iqr_clip_real(energy, scale=3)]], 0)
        data["energy"].append(mean)
        data["std"].append(std)
    ed_n = [6, 7, 8, 9, 10, 11]
    ed_output = [
        7.7432698280425,
        10.121045415564,
        12.725298638045,
        15.542042784237,
        18.559733276244,
        21.768350529899,
    ]
    data["ed"] = [
        ed_energy(e, n, 3 * (n - 1) / 2, np.sqrt(3 * (n - 1) / 2), 1 / 3)
        for n, e in zip(ed_n, ed_output)
    ] + [np.nan]
    return pd.DataFrame(data)


def llm_1_3():
    data = {
        "kappa": [0.5, 1, 3, 10],
        "energy": [],
        "energy_std": [],
        "qp_energy": [],
        "qp_energy_std": [],
        "qh_energy": [],
        "qh_energy_std": [],
        "gap": [],
        "gap_std": [],
        "overlap": [],
        "overlap_std": [],
        "n_LLL": [],
        "n_LLL_std": [],
    }
    for kappa in data["kappa"]:
        netobs_ckpt = DATA_PATH / f"n6l14/k{kappa}/energy/netobs_ckpt_001999.npz"
        with netobs_ckpt.open("rb") as f, np.load(f) as npf:
            qp_energy = correct_energy(
                npf["values/kinetic"],
                npf["values/potential"],
                *(6, 14 / 2, np.sqrt(14 / 2)),
                nu=1 / 3,
                kappa=kappa,
                q=1 / 3,
            ).real
        qp_energy_mean, qp_energy_std, *_ = tauint([[iqr_clip_real(qp_energy)]], 0)
        data["qp_energy"].append(qp_energy_mean)
        data["qp_energy_std"].append(qp_energy_std)
        netobs_ckpt = DATA_PATH / f"n6l15/k{kappa}/energy/netobs_ckpt_001999.npz"
        with netobs_ckpt.open("rb") as f, np.load(f) as npf:
            energy = correct_energy(
                npf["values/kinetic"],
                npf["values/potential"],
                *(6, 15 / 2, np.sqrt(15 / 2)),
                nu=1 / 3,
                kappa=kappa,
            ).real
        energy_mean, energy_std, *_ = tauint([[iqr_clip_real(energy)]], 0)
        data["energy"].append(energy_mean)
        data["energy_std"].append(energy_std)
        netobs_ckpt = DATA_PATH / f"n6l16/k{kappa}/energy/netobs_ckpt_001999.npz"
        with netobs_ckpt.open("rb") as f, np.load(f) as npf:
            qh_energy = correct_energy(
                npf["values/kinetic"],
                npf["values/potential"],
                *(6, 16 / 2, np.sqrt(16 / 2)),
                nu=1 / 3,
                kappa=kappa,
                q=1 / 3,
            ).real
        qh_energy_mean, qh_energy_std, *_ = tauint([[iqr_clip_real(qh_energy)]], 0)
        data["qh_energy"].append(qh_energy_mean)
        data["qh_energy_std"].append(qh_energy_std)

        gap_mean, gap_std, *_ = tauint(
            [[6 * iqr_clip_real(qp_energy + qh_energy - 2 * energy)]], 0
        )
        data["gap"].append(gap_mean)
        data["gap_std"].append(gap_std)

        netobs_ckpt = DATA_PATH / f"n6l15/k{kappa}/overlap/netobs_ckpt_000199.npz"
        with netobs_ckpt.open("rb") as f, np.load(f) as npf:
            overlap_num_real, overlap_num_real_std, *_ = tauint(
                [[npf["values/ratio"].real]], 0
            )
            overlap_num_imag, overlap_num_imag_std, *_ = tauint(
                [[npf["values/ratio"].imag]], 0
            )
            overlap_den, overlap_den_std, *_ = tauint([[npf["values/ratio_square"]]], 0)
            overlap = umath.sqrt(
                (
                    ufloat(overlap_num_real, overlap_num_real_std) ** 2
                    + ufloat(overlap_num_imag, overlap_num_imag_std) ** 2
                )
                / ufloat(overlap_den, overlap_den_std)
            )
            data["overlap"].append(overlap.n)
            data["overlap_std"].append(overlap.s)
        netobs_ckpt = DATA_PATH / f"n6l15/k{kappa}/1rdm/netobs_ckpt_019999.npz"
        with netobs_ckpt.open("rb") as f, np.load(f) as npf:
            trace = np.trace(npf["values/one_rdm"], axis1=1, axis2=2)
            mean, std, *_ = tauint([[trace.real]], 0)
            data["n_LLL"].append(mean)
            data["n_LLL_std"].append(std)
    return pd.DataFrame(data)


if __name__ == "__main__":
    energy_vs_n().to_csv(open(DATA_PATH / "energy_vs_n.csv", "w"), index=False)
    llm_1_3().to_csv(open(DATA_PATH / "llm_1_3.csv", "w"), index=False)