File size: 4,782 Bytes
ac6f5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
Cannabis Analytes
Copyright (c) 2023 Cannlytics

Authors:
    Keegan Skeate <https://github.com/keeganskeate>
    Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 10/10/2023
Updated: 10/10/2023
License: <https://huggingface.co/datasets/cannlytics/cannabis_analytes/blob/main/LICENSE>
"""
# External imports:
import datasets
import pandas as pd

# Constants.
_SCRIPT = 'cannabis_analytes.py'
_VERSION = '2023.10.10'
_HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_analytes'
_LICENSE = "https://opendatacommons.org/licenses/by/4-0/"
_DESCRIPTION = """\
This dataset consists of analyte data for various analytes that are regularly tested for in cannabis. The dataset consists of sub-datasets for each type of test, as well as a sub-dataset that includes all analytes.
"""
_CITATION = """\
@inproceedings{cannlytics2023cannabis_analytes,
  author    = {Skeate, Keegan and O'Sullivan-Sutherland, Candace},
  title     = {Cannabis Analytes},
  booktitle = {Cannabis Data Science},
  month     = {October},
  year      = {2023},
  address   = {United States of America},
  publisher = {Cannlytics}
}
"""

# Define subsets.
SUBSETS = [
    'all',
    'cannabinoids',
    'terpenes',
]

# Dataset fields.
FIELDS = datasets.Features({
    'description': datasets.Value(dtype='string'),
    'key': datasets.Value(dtype='string'),
    'name': datasets.Value(dtype='string'),
    'scientific_name': datasets.Value(dtype='string'),
    'type': datasets.Value(dtype='string'),
    'wikipedia_url': datasets.Value(dtype='string'),
    'degrades_to': datasets.Sequence(datasets.Value(dtype='string')),
    'precursors': datasets.Sequence(datasets.Value(dtype='string')),
    'subtype': datasets.Value(dtype='string'),
    'cas_number': datasets.Value(dtype='string'),
    'chemical_formula': datasets.Value(dtype='string'),
    'molar_mass': datasets.Value(dtype='string'),
    'density': datasets.Value(dtype='string'),
    'boiling_point': datasets.Value(dtype='string'),
    'image_url': datasets.Value(dtype='string'),
    'chemical_formula_image_url': datasets.Value(dtype='string'),
})


class CannabisAnalytesConfig(datasets.BuilderConfig):
    """BuilderConfig for the Cannabis Analytes dataset."""

    def __init__(self, name, **kwargs):
        """BuilderConfig for the Cannabis Analytes dataset.
        Args:
            name (str): Configuration name that determines setup.
            **kwargs: Keyword arguments forwarded to super.
        """
        description = _DESCRIPTION
        description += f'This configuration is for the `{name}` subset.'
        super().__init__(
            data_dir='data',
            description=description,
            name=name,
            **kwargs,
        )


class CannabisLicenses(datasets.GeneratorBasedBuilder):
    """The Cannabis Licenses dataset."""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIG_CLASS = CannabisAnalytesConfig
    BUILDER_CONFIGS = [CannabisAnalytesConfig(s) for s in SUBSETS]
    DEFAULT_CONFIG_NAME = 'all'

    def _info(self):
        """Returns the dataset metadata."""
        return datasets.DatasetInfo(
            features=FIELDS,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            description=_DESCRIPTION,
            license=_LICENSE,
            version=_VERSION,
        )
    
    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        subset = self.config.name
        if subset == 'all':
            subset = 'analytes'
        data_url = f'data/{subset}.json'
        urls = {subset: data_url}
        downloaded_files = dl_manager.download_and_extract(urls)
        params = {'filepath': downloaded_files[subset]}
        return [datasets.SplitGenerator(name='data', gen_kwargs=params)]

    def _generate_examples(self, filepath):
        """Returns the examples in raw text form."""
        # Read the data.
        df = pd.read_json(filepath)

        # Add missing columns.
        for col in FIELDS.keys():
            if col not in df.columns:
                df[col] = ''

        # Keep only the feature columns.
        df = df[list(FIELDS.keys())]

        # Fill missing values.
        df.fillna('', inplace=True)

        # Return the data as a dictionary.
        for index, row in df.iterrows():
            obs = row.to_dict()
            yield index, obs


# === Test ===
# [✓] Tested: 2023-10-10 by Keegan Skeate <keegan@cannlytics>
if __name__ == '__main__':

    from datasets import load_dataset

    # Load each dataset subset.
    for subset in SUBSETS:
        dataset = load_dataset(_SCRIPT, subset)
        data = dataset['data']
        assert len(data) > 0
        print('Read %i %s data points.' % (len(data), subset))