""" Cannabis Analytes Copyright (c) 2023 Cannlytics Authors: Keegan Skeate Candace O'Sullivan-Sutherland Created: 10/10/2023 Updated: 10/10/2023 License: """ # External imports: import datasets import pandas as pd # Constants. _SCRIPT = 'cannabis_analytes.py' _VERSION = '2023.10.10' _HOMEPAGE = 'https://huggingface.co/datasets/cannlytics/cannabis_analytes' _LICENSE = "https://opendatacommons.org/licenses/by/4-0/" _DESCRIPTION = """\ This dataset consists of analyte data for various analytes that are regularly tested for in cannabis. The dataset consists of sub-datasets for each type of test, as well as a sub-dataset that includes all analytes. """ _CITATION = """\ @inproceedings{cannlytics2023cannabis_analytes, author = {Skeate, Keegan and O'Sullivan-Sutherland, Candace}, title = {Cannabis Analytes}, booktitle = {Cannabis Data Science}, month = {October}, year = {2023}, address = {United States of America}, publisher = {Cannlytics} } """ # Define subsets. SUBSETS = [ 'all', 'cannabinoids', 'terpenes', ] # Dataset fields. FIELDS = datasets.Features({ 'description': datasets.Value(dtype='string'), 'key': datasets.Value(dtype='string'), 'name': datasets.Value(dtype='string'), 'scientific_name': datasets.Value(dtype='string'), 'type': datasets.Value(dtype='string'), 'wikipedia_url': datasets.Value(dtype='string'), 'degrades_to': datasets.Sequence(datasets.Value(dtype='string')), 'precursors': datasets.Sequence(datasets.Value(dtype='string')), 'subtype': datasets.Value(dtype='string'), 'cas_number': datasets.Value(dtype='string'), 'chemical_formula': datasets.Value(dtype='string'), 'molar_mass': datasets.Value(dtype='string'), 'density': datasets.Value(dtype='string'), 'boiling_point': datasets.Value(dtype='string'), 'image_url': datasets.Value(dtype='string'), 'chemical_formula_image_url': datasets.Value(dtype='string'), }) class CannabisAnalytesConfig(datasets.BuilderConfig): """BuilderConfig for the Cannabis Analytes dataset.""" def __init__(self, name, **kwargs): """BuilderConfig for the Cannabis Analytes dataset. Args: name (str): Configuration name that determines setup. **kwargs: Keyword arguments forwarded to super. """ description = _DESCRIPTION description += f'This configuration is for the `{name}` subset.' super().__init__( data_dir='data', description=description, name=name, **kwargs, ) class CannabisLicenses(datasets.GeneratorBasedBuilder): """The Cannabis Licenses dataset.""" VERSION = datasets.Version(_VERSION) BUILDER_CONFIG_CLASS = CannabisAnalytesConfig BUILDER_CONFIGS = [CannabisAnalytesConfig(s) for s in SUBSETS] DEFAULT_CONFIG_NAME = 'all' def _info(self): """Returns the dataset metadata.""" return datasets.DatasetInfo( features=FIELDS, supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, description=_DESCRIPTION, license=_LICENSE, version=_VERSION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" subset = self.config.name if subset == 'all': subset = 'analytes' data_url = f'data/{subset}.json' urls = {subset: data_url} downloaded_files = dl_manager.download_and_extract(urls) params = {'filepath': downloaded_files[subset]} return [datasets.SplitGenerator(name='data', gen_kwargs=params)] def _generate_examples(self, filepath): """Returns the examples in raw text form.""" # Read the data. df = pd.read_json(filepath) # Add missing columns. for col in FIELDS.keys(): if col not in df.columns: df[col] = '' # Keep only the feature columns. df = df[list(FIELDS.keys())] # Fill missing values. df.fillna('', inplace=True) # Return the data as a dictionary. for index, row in df.iterrows(): obs = row.to_dict() yield index, obs # === Test === # [✓] Tested: 2023-10-10 by Keegan Skeate if __name__ == '__main__': from datasets import load_dataset # Load each dataset subset. for subset in SUBSETS: dataset = load_dataset(_SCRIPT, subset) data = dataset['data'] assert len(data) > 0 print('Read %i %s data points.' % (len(data), subset))