antypasd commited on
Commit
1939eed
·
1 Parent(s): bc7a465

updated hate dataset

Browse files
data/tweet_hate/test.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
data/tweet_hate/train.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
data/tweet_hate/validation.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
process/tweet_hate.py CHANGED
@@ -15,7 +15,8 @@ class_mapping = {
15
  'target_religion_aggregated': 3,
16
  'target_origin_aggregated': 4,
17
  'target_disability_aggregated': 5,
18
- 'target_age_aggregated': 6
 
19
  }
20
 
21
 
@@ -44,7 +45,7 @@ def clean_text(text):
44
 
45
 
46
  # load data
47
- dataset = load_dataset('ucberkeley-dlab/measuring-hate-speech', 'binary')
48
  df = dataset['train'].to_pandas()
49
 
50
  # get label
@@ -62,7 +63,7 @@ df_count_label = df_count_label.rename(columns={'annon_label': 'count'})
62
  df_count_label = df_count_label.reset_index(level=1)
63
  df_count_label = df_count_label[df_count_label['count'] >= 2]
64
 
65
- # map label
66
  df = df.set_index('comment_id')
67
  df['label'] = None
68
  df['label'] = df_count_label['annon_label']
@@ -71,7 +72,7 @@ df['label'] = df_count_label['annon_label']
71
  df = df[df['label'].notnull()]
72
  df = df.reset_index()
73
 
74
- # find aggrement on target
75
  targets = ['target_race', 'target_religion', 'target_origin', 'target_gender',
76
  'target_sexuality', 'target_age', 'target_disability']
77
 
@@ -107,11 +108,13 @@ df = df.reset_index()
107
 
108
 
109
  # clean multiclass
110
- # only tweets with 1 target & is hate_speech
111
  idx_multiclass = df[df['label'] == 1].index
 
112
 
113
  # initialize column
114
  df['gold_label'] = None
 
115
  df.loc[idx_multiclass, 'gold_label'] = df.loc[idx_multiclass]['target']
116
 
117
  # drop entries without target
@@ -136,7 +139,7 @@ train, test = train_test_split(df, test_size=test_size, stratify=df['gold_label'
136
  train, val = train_test_split(train, test_size=val_size, stratify=train['gold_label'].values, random_state=4)
137
 
138
  # save splits
139
- cols_to_keep = ['text', 'gold_label']
140
  train[cols_to_keep].to_json('../data/tweet_hate/train.jsonl', lines=True, orient='records')
141
  val[cols_to_keep].to_json('../data/tweet_hate/validation.jsonl', lines=True, orient='records')
142
  test[cols_to_keep].to_json('../data/tweet_hate/test.jsonl', lines=True, orient='records')
 
15
  'target_religion_aggregated': 3,
16
  'target_origin_aggregated': 4,
17
  'target_disability_aggregated': 5,
18
+ 'target_age_aggregated': 6,
19
+ 'not_hate': 7
20
  }
21
 
22
 
 
45
 
46
 
47
  # load data
48
+ dataset = load_dataset('ucberkeley-dlab/measuring-hate-speech')
49
  df = dataset['train'].to_pandas()
50
 
51
  # get label
 
63
  df_count_label = df_count_label.reset_index(level=1)
64
  df_count_label = df_count_label[df_count_label['count'] >= 2]
65
 
66
+ # map binary label
67
  df = df.set_index('comment_id')
68
  df['label'] = None
69
  df['label'] = df_count_label['annon_label']
 
72
  df = df[df['label'].notnull()]
73
  df = df.reset_index()
74
 
75
+ # find aggrement on targets
76
  targets = ['target_race', 'target_religion', 'target_origin', 'target_gender',
77
  'target_sexuality', 'target_age', 'target_disability']
78
 
 
108
 
109
 
110
  # clean multiclass
111
+ # give target only to tweets with 1 (is hate speech) target
112
  idx_multiclass = df[df['label'] == 1].index
113
+ idx_not_hate = df[df['label'] == 0].index
114
 
115
  # initialize column
116
  df['gold_label'] = None
117
+ df.loc[idx_not_hate, 'gold_label'] = 'not_hate'
118
  df.loc[idx_multiclass, 'gold_label'] = df.loc[idx_multiclass]['target']
119
 
120
  # drop entries without target
 
139
  train, val = train_test_split(train, test_size=val_size, stratify=train['gold_label'].values, random_state=4)
140
 
141
  # save splits
142
+ cols_to_keep = ['gold_label', 'text']
143
  train[cols_to_keep].to_json('../data/tweet_hate/train.jsonl', lines=True, orient='records')
144
  val[cols_to_keep].to_json('../data/tweet_hate/validation.jsonl', lines=True, orient='records')
145
  test[cols_to_keep].to_json('../data/tweet_hate/test.jsonl', lines=True, orient='records')
super_tweet_eval.py CHANGED
@@ -102,6 +102,27 @@ _TEMPO_WIC_CITATION = """\
102
  abstract = "Language evolves over time, and word meaning changes accordingly. This is especially true in social media, since its dynamic nature leads to faster semantic shifts, making it challenging for NLP models to deal with new content and trends. However, the number of datasets and models that specifically address the dynamic nature of these social platforms is scarce. To bridge this gap, we present TempoWiC, a new benchmark especially aimed at accelerating research in social media-based meaning shift. Our results show that TempoWiC is a challenging benchmark, even for recently-released language models specialized in social media.",
103
  }
104
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105
 
106
 
107
  class SuperTweetEvalConfig(datasets.BuilderConfig):
@@ -175,6 +196,13 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
175
  'text_1', 'text_1_tokenized', 'token_idx_1', 'date_1',
176
  'text_2', 'text_2_tokenized', 'token_idx_2', 'date_2'],
177
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tempo_wic",
 
 
 
 
 
 
 
178
  )
179
  ]
180
 
@@ -201,6 +229,13 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
201
  features["token_idx_2"] = datasets.Value("int32")
202
  features["text_1_tokenized"] = datasets.Sequence(datasets.Value("string"))
203
  features["text_2_tokenized"] = datasets.Sequence(datasets.Value("string"))
 
 
 
 
 
 
 
204
 
205
  return datasets.DatasetInfo(
206
  description=_SUPER_TWEET_EVAL_DESCRIPTION + "\n" + self.config.description,
 
102
  abstract = "Language evolves over time, and word meaning changes accordingly. This is especially true in social media, since its dynamic nature leads to faster semantic shifts, making it challenging for NLP models to deal with new content and trends. However, the number of datasets and models that specifically address the dynamic nature of these social platforms is scarce. To bridge this gap, we present TempoWiC, a new benchmark especially aimed at accelerating research in social media-based meaning shift. Our results show that TempoWiC is a challenging benchmark, even for recently-released language models specialized in social media.",
103
  }
104
  """
105
+ _TWEET_HATE_DESCRIPTION = """TBA"""
106
+ _TWEET_HATE_CITATION = """\
107
+ @inproceedings{sachdeva-etal-2022-measuring,
108
+ title = "The Measuring Hate Speech Corpus: Leveraging Rasch Measurement Theory for Data Perspectivism",
109
+ author = "Sachdeva, Pratik and
110
+ Barreto, Renata and
111
+ Bacon, Geoff and
112
+ Sahn, Alexander and
113
+ von Vacano, Claudia and
114
+ Kennedy, Chris",
115
+ booktitle = "Proceedings of the 1st Workshop on Perspectivist Approaches to NLP @LREC2022",
116
+ month = jun,
117
+ year = "2022",
118
+ address = "Marseille, France",
119
+ publisher = "European Language Resources Association",
120
+ url = "https://aclanthology.org/2022.nlperspectives-1.11",
121
+ pages = "83--94",
122
+ abstract = "We introduce the Measuring Hate Speech corpus, a dataset created to measure hate speech while adjusting for annotators{'} perspectives. It consists of 50,070 social media comments spanning YouTube, Reddit, and Twitter, labeled by 11,143 annotators recruited from Amazon Mechanical Turk. Each observation includes 10 ordinal labels: sentiment, disrespect, insult, attacking/defending, humiliation, inferior/superior status, dehumanization, violence, genocide, and a 3-valued hate speech benchmark label. The labels are aggregated using faceted Rasch measurement theory (RMT) into a continuous score that measures each comment{'}s location on a hate speech spectrum. The annotation experimental design assigned comments to multiple annotators in order to yield a linked network, allowing annotator disagreement (perspective) to be statistically summarized. Annotators{'} labeling strictness was estimated during the RMT scaling, projecting their perspective onto a linear measure that was adjusted for the hate speech score. Models that incorporate this annotator perspective parameter as an auxiliary input can generate label- and score-level predictions conditional on annotator perspective. The corpus includes the identity group targets of each comment (8 groups, 42 subgroups) and annotator demographics (6 groups, 40 subgroups), facilitating analyses of interactions between annotator- and comment-level identities, i.e. identity-related annotator perspective.",
123
+ }
124
+ """
125
+
126
 
127
 
128
  class SuperTweetEvalConfig(datasets.BuilderConfig):
 
196
  'text_1', 'text_1_tokenized', 'token_idx_1', 'date_1',
197
  'text_2', 'text_2_tokenized', 'token_idx_2', 'date_2'],
198
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tempo_wic",
199
+ ),
200
+ SuperTweetEvalConfig(
201
+ name="tweet_hate",
202
+ description=_TWEET_HATE_DESCRIPTION,
203
+ citation=_TWEET_HATE_CITATION,
204
+ features=['gold_label', 'text'],
205
+ data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_hate",
206
  )
207
  ]
208
 
 
229
  features["token_idx_2"] = datasets.Value("int32")
230
  features["text_1_tokenized"] = datasets.Sequence(datasets.Value("string"))
231
  features["text_2_tokenized"] = datasets.Sequence(datasets.Value("string"))
232
+ if self.config.name == "tweet_hate":
233
+ names = [
234
+ 'target_gender_aggregated','target_race_aggregated', 'target_sexuality_aggregated',
235
+ 'target_religion_aggregated','target_origin_aggregated', 'target_disability_aggregated','target_age_aggregated',
236
+ 'not_hate']
237
+ features["gold_label"] = datasets.Value("int32")
238
+ features["text"] = datasets.Value("string")
239
 
240
  return datasets.DatasetInfo(
241
  description=_SUPER_TWEET_EVAL_DESCRIPTION + "\n" + self.config.description,