asahi417 commited on
Commit
1f8eb0e
·
1 Parent(s): 454955a
data/tempo_wic/test.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/tempo_wic/train.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/tempo_wic/validation.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
process/tempo_wic.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import pandas as pd
4
+
5
+ os.makedirs("data/tempo_wic", exist_ok=True)
6
+
7
+ for s in ['train', 'validation', 'test']:
8
+ if s == 'test':
9
+ with open(f"misc/TempoWiC/data/test-codalab-10k.data.jl") as f:
10
+ data = pd.DataFrame([json.loads(i) for i in f.read().split("\n") if len(i) > 0])
11
+ df = pd.read_csv(f"misc/TempoWiC/data/test.gold.tsv", sep="\t")
12
+ else:
13
+ with open(f"misc/TempoWiC/data/{s}.data.jl") as f:
14
+ data = pd.DataFrame([json.loads(i) for i in f.read().split("\n") if len(i) > 0])
15
+ df = pd.read_csv(f"misc/TempoWiC/data/{s}.labels.tsv", sep="\t")
16
+ df.columns = ["id", "label"]
17
+ df.index = df.pop("id")
18
+ data = data[[i in df.index for i in data['id']]]
19
+ data['label'] = [df.loc[i].values[0] for i in data['id'] if i in df.index]
20
+ assert len(df) == len(data)
21
+
22
+ data_jl = []
23
+ for _, i in data.iterrows():
24
+ i = i.to_dict()
25
+ tmp = {"id": i['id'], "word": i["word"], "label_binary": i["label"]}
26
+ tmp.update({f"{k}_1": v for k, v in i['tweet1'].items()})
27
+ tmp.update({f"{k}_2": v for k, v in i['tweet2'].items()})
28
+ tmp['text_1_tokenized'] = tmp.pop('tokens_1')
29
+ tmp['text_2_tokenized'] = tmp.pop('tokens_2')
30
+ data_jl.append(tmp)
31
+ with open(f"data/tempo_wic/{s}.jsonl", "w") as f:
32
+ f.write("\n".join([json.dumps(i) for i in data_jl]))
33
+
super_tweet_eval.py CHANGED
@@ -79,6 +79,29 @@ _TWEET_INTIMACY_CITATION = """\
79
  """
80
  _TWEET_SIMILARITY_DESCRIPTION = """TBA"""
81
  _TWEET_SIMILARITY_CITATION = """TBA"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
 
84
  class SuperTweetEvalConfig(datasets.BuilderConfig):
@@ -143,6 +166,15 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
143
  citation=_TWEET_SIMILARITY_CITATION,
144
  features=["text_1", "text_2", "label_float"],
145
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_similarity",
 
 
 
 
 
 
 
 
 
146
  )
147
  ]
148
 
@@ -163,6 +195,10 @@ class SuperTweetEval(datasets.GeneratorBasedBuilder):
163
  features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
164
  if self.config.name in ["tweet_intimacy", "tweet_similarity"]:
165
  features["label_float"] = datasets.Value("float32")
 
 
 
 
166
 
167
  return datasets.DatasetInfo(
168
  description=_SUPER_TWEET_EVAL_DESCRIPTION + "\n" + self.config.description,
 
79
  """
80
  _TWEET_SIMILARITY_DESCRIPTION = """TBA"""
81
  _TWEET_SIMILARITY_CITATION = """TBA"""
82
+ _TEMPO_WIC_DESCRIPTION = """TBA"""
83
+ _TEMPO_WIC_CITATION = """\
84
+ @inproceedings{loureiro-etal-2022-tempowic,
85
+ title = "{T}empo{W}i{C}: An Evaluation Benchmark for Detecting Meaning Shift in Social Media",
86
+ author = "Loureiro, Daniel and
87
+ D{'}Souza, Aminette and
88
+ Muhajab, Areej Nasser and
89
+ White, Isabella A. and
90
+ Wong, Gabriel and
91
+ Espinosa-Anke, Luis and
92
+ Neves, Leonardo and
93
+ Barbieri, Francesco and
94
+ Camacho-Collados, Jose",
95
+ booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
96
+ month = oct,
97
+ year = "2022",
98
+ address = "Gyeongju, Republic of Korea",
99
+ publisher = "International Committee on Computational Linguistics",
100
+ url = "https://aclanthology.org/2022.coling-1.296",
101
+ pages = "3353--3359",
102
+ abstract = "Language evolves over time, and word meaning changes accordingly. This is especially true in social media, since its dynamic nature leads to faster semantic shifts, making it challenging for NLP models to deal with new content and trends. However, the number of datasets and models that specifically address the dynamic nature of these social platforms is scarce. To bridge this gap, we present TempoWiC, a new benchmark especially aimed at accelerating research in social media-based meaning shift. Our results show that TempoWiC is a challenging benchmark, even for recently-released language models specialized in social media.",
103
+ }
104
+ """
105
 
106
 
107
  class SuperTweetEvalConfig(datasets.BuilderConfig):
 
166
  citation=_TWEET_SIMILARITY_CITATION,
167
  features=["text_1", "text_2", "label_float"],
168
  data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tweet_similarity",
169
+ ),
170
+ SuperTweetEvalConfig(
171
+ name="tempo_wic",
172
+ description=_TEMPO_WIC_DESCRIPTION,
173
+ citation=_TEMPO_WIC_CITATION,
174
+ features=['label_binary', 'id', 'word',
175
+ 'text_1', 'text_tokenized_1', 'token_idx_1', 'text_start_1', 'text_end_1', 'date_1',
176
+ 'text_2', 'text_tokenized_2', 'token_idx_2', 'text_start_2', 'text_end_2', 'date_2'],
177
+ data_url="https://huggingface.co/datasets/cardiffnlp/super_tweet_eval/resolve/main/data/tempo_wic",
178
  )
179
  ]
180
 
 
195
  features["text_tokenized"] = datasets.Sequence(datasets.Value("string"))
196
  if self.config.name in ["tweet_intimacy", "tweet_similarity"]:
197
  features["label_float"] = datasets.Value("float32")
198
+ if self.config.name == "tempo_wic":
199
+ features["label_binary"] = datasets.Value("int32")
200
+ features["text_tokenized_1"] = datasets.Sequence(datasets.Value("string"))
201
+ features["text_tokenized_2"] = datasets.Sequence(datasets.Value("string"))
202
 
203
  return datasets.DatasetInfo(
204
  description=_SUPER_TWEET_EVAL_DESCRIPTION + "\n" + self.config.description,