asahi417 commited on
Commit
d9bd9cf
·
1 Parent(s): 7db50a7
Files changed (1) hide show
  1. training_scripts/finetune_t5.py +4 -9
training_scripts/finetune_t5.py CHANGED
@@ -71,7 +71,7 @@ def train(
71
  dataset_split_validation: str,
72
  dataset_split_test: str,
73
  lr: List,
74
- epoch: int,
75
  batch: List,
76
  down_sample_train: int,
77
  down_sample_validation: int,
@@ -138,7 +138,8 @@ def train(
138
  if not skip_train:
139
  lr = [1e-6, 1e-4] if lr is None else lr
140
  batch = [64] if batch is None else batch
141
- for n, (lr_tmp, batch_tmp) in enumerate(product(lr, batch)):
 
142
  logging.info(f"[TRAIN {n}/{len(lr) * len(batch)}] lr: {lr_tmp}, batch: {batch_tmp}")
143
  model = load_model(
144
  model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
@@ -146,7 +147,7 @@ def train(
146
  trainer = Seq2SeqTrainer(
147
  model=model,
148
  args=Seq2SeqTrainingArguments(
149
- num_train_epochs=epoch,
150
  learning_rate=lr_tmp,
151
  output_dir=f"{output_dir}/model_{n}",
152
  evaluation_strategy='steps',
@@ -166,12 +167,6 @@ def train(
166
  trainer.log_metrics("train", metrics)
167
  trainer.save_metrics("train", metrics)
168
  trainer.save_state()
169
-
170
- # trainer.save_model(f'{output_dir}/model_{n}')
171
- # tokenizer.save_pretrained(f'{output_dir}/model_{n}')
172
- # # grid search
173
- # with open(f'{output_dir}/model_{n}/hyperparameters.json', 'w') as f:
174
- # json.dump({"learning_rate": lr_tmp, "batch_size": batch_tmp}, f)
175
  del trainer
176
  gc.collect()
177
  torch.cuda.empty_cache()
 
71
  dataset_split_validation: str,
72
  dataset_split_test: str,
73
  lr: List,
74
+ epoch: List,
75
  batch: List,
76
  down_sample_train: int,
77
  down_sample_validation: int,
 
138
  if not skip_train:
139
  lr = [1e-6, 1e-4] if lr is None else lr
140
  batch = [64] if batch is None else batch
141
+ epoch = [1, 3, 5] if epoch is None else epoch
142
+ for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)):
143
  logging.info(f"[TRAIN {n}/{len(lr) * len(batch)}] lr: {lr_tmp}, batch: {batch_tmp}")
144
  model = load_model(
145
  model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage
 
147
  trainer = Seq2SeqTrainer(
148
  model=model,
149
  args=Seq2SeqTrainingArguments(
150
+ num_train_epochs=epoch_tmp,
151
  learning_rate=lr_tmp,
152
  output_dir=f"{output_dir}/model_{n}",
153
  evaluation_strategy='steps',
 
167
  trainer.log_metrics("train", metrics)
168
  trainer.save_metrics("train", metrics)
169
  trainer.save_state()
 
 
 
 
 
 
170
  del trainer
171
  gc.collect()
172
  torch.cuda.empty_cache()