Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Update lm_finetuning.py
Browse files- lm_finetuning.py +4 -4
lm_finetuning.py
CHANGED
@@ -96,7 +96,7 @@ def main():
|
|
96 |
# setup model
|
97 |
tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
|
98 |
model = AutoModelForSequenceClassification.from_pretrained(
|
99 |
-
opt.model, num_labels=
|
100 |
tokenized_datasets = dataset.map(
|
101 |
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
|
102 |
batched=True)
|
@@ -116,7 +116,7 @@ def main():
|
|
116 |
train_dataset=tokenized_datasets[opt.split_train],
|
117 |
eval_dataset=tokenized_datasets[opt.split_validation],
|
118 |
compute_metrics=compute_metric_search,
|
119 |
-
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(opt.model, num_labels=
|
120 |
)
|
121 |
# parameter search
|
122 |
if PARALLEL:
|
@@ -150,7 +150,7 @@ def main():
|
|
150 |
|
151 |
# evaluation
|
152 |
model = AutoModelForSequenceClassification.from_pretrained(
|
153 |
-
opt.model, num_labels=
|
154 |
trainer = Trainer(
|
155 |
model=model,
|
156 |
args=TrainingArguments(
|
@@ -162,7 +162,7 @@ def main():
|
|
162 |
eval_dataset=tokenized_datasets[opt.split_test],
|
163 |
compute_metrics=compute_metric_all,
|
164 |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
|
165 |
-
opt.model, num_labels=
|
166 |
)
|
167 |
summary_file = pj(opt.output_dir, opt.summary_file)
|
168 |
if not opt.skip_eval:
|
|
|
96 |
# setup model
|
97 |
tokenizer = AutoTokenizer.from_pretrained(opt.model, local_files_only=not network)
|
98 |
model = AutoModelForSequenceClassification.from_pretrained(
|
99 |
+
opt.model, num_labels=6, local_files_only=not network)
|
100 |
tokenized_datasets = dataset.map(
|
101 |
lambda x: tokenizer(x["text"], padding="max_length", truncation=True, max_length=opt.seq_length),
|
102 |
batched=True)
|
|
|
116 |
train_dataset=tokenized_datasets[opt.split_train],
|
117 |
eval_dataset=tokenized_datasets[opt.split_validation],
|
118 |
compute_metrics=compute_metric_search,
|
119 |
+
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(opt.model, num_labels=6, local_files_only=not network, return_dict=True)
|
120 |
)
|
121 |
# parameter search
|
122 |
if PARALLEL:
|
|
|
150 |
|
151 |
# evaluation
|
152 |
model = AutoModelForSequenceClassification.from_pretrained(
|
153 |
+
opt.model, num_labels=6, local_files_only=not network)
|
154 |
trainer = Trainer(
|
155 |
model=model,
|
156 |
args=TrainingArguments(
|
|
|
162 |
eval_dataset=tokenized_datasets[opt.split_test],
|
163 |
compute_metrics=compute_metric_all,
|
164 |
model_init=lambda x: AutoModelForSequenceClassification.from_pretrained(
|
165 |
+
opt.model, num_labels=6, local_files_only=not network, return_dict=True)
|
166 |
)
|
167 |
summary_file = pj(opt.output_dir, opt.summary_file)
|
168 |
if not opt.skip_eval:
|