carlosdanielhernandezmena commited on
Commit
85a9c54
1 Parent(s): a40b4d7

Delete loading script

Browse files
Files changed (1) hide show
  1. prueba.py +0 -147
prueba.py DELETED
@@ -1,147 +0,0 @@
1
- from collections import defaultdict
2
- import os
3
- import json
4
- import csv
5
-
6
- import datasets
7
-
8
- _NAME="prueba"
9
- _VERSION="1.0.0"
10
-
11
- _DESCRIPTION = """
12
- An extremely small corpus of 40 audio files taken from Common Voice (es) with the objective of testing how to share datasets in Hugging Face.
13
- """
14
-
15
- _CITATION = """
16
- @misc{toy_corpus_asr_es,
17
- title={Toy Corpus for ASR in Spanish.},
18
- author={Hernandez Mena, Carlos Daniel},
19
- year={2022},
20
- url={https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es},
21
- }
22
- """
23
-
24
- _HOMEPAGE = "https://huggingface.co/datasets/carlosdanielhernandezmena/toy_corpus_asr_es"
25
-
26
- _LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"
27
-
28
- _BASE_DATA_DIR = "corpus/"
29
- _METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files","metadata_train.tsv")
30
- _METADATA_TEST = os.path.join(_BASE_DATA_DIR,"files", "metadata_test.tsv")
31
- _METADATA_DEV = os.path.join(_BASE_DATA_DIR,"files", "metadata_dev.tsv")
32
-
33
- _TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","tars_train.paths")
34
- _TARS_TEST = os.path.join(_BASE_DATA_DIR,"files", "tars_test.paths")
35
- _TARS_DEV = os.path.join(_BASE_DATA_DIR,"files", "tars_dev.paths")
36
-
37
- class ToyCorpusAsrEsConfig(datasets.BuilderConfig):
38
- """BuilderConfig for Toy Corpus ASR ES."""
39
-
40
- def __init__(self, name, **kwargs):
41
- name=_NAME
42
- super().__init__(name=name, **kwargs)
43
-
44
- class ToyCorpusAsrEs(datasets.GeneratorBasedBuilder):
45
- """The Toy Corpus ASR ES dataset."""
46
-
47
- VERSION = datasets.Version(_VERSION)
48
- BUILDER_CONFIGS = [
49
- ToyCorpusAsrEsConfig(
50
- name=_NAME,
51
- version=datasets.Version(_VERSION),
52
- )
53
- ]
54
-
55
- def _info(self):
56
- features = datasets.Features(
57
- {
58
- "audio_id": datasets.Value("string"),
59
- "audio": datasets.Audio(sampling_rate=16000),
60
- "split": datasets.Value("string"),
61
- "gender": datasets.Value("string"),
62
- "normalized_text": datasets.Value("string"),
63
- "relative_path": datasets.Value("string"),
64
- }
65
- )
66
- return datasets.DatasetInfo(
67
- description=_DESCRIPTION,
68
- features=features,
69
- homepage=_HOMEPAGE,
70
- license=_LICENSE,
71
- citation=_CITATION,
72
- )
73
-
74
- def _split_generators(self, dl_manager):
75
-
76
- metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
77
- metadata_test=dl_manager.download_and_extract(_METADATA_TEST)
78
- metadata_dev=dl_manager.download_and_extract(_METADATA_DEV)
79
-
80
- tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
81
- tars_test=dl_manager.download_and_extract(_TARS_TEST)
82
- tars_dev=dl_manager.download_and_extract(_TARS_DEV)
83
-
84
- hash_tar_files=defaultdict(dict)
85
- with open(tars_train,'r') as f:
86
- hash_tar_files['train']=[path.replace('\n','') for path in f]
87
-
88
- with open(tars_test,'r') as f:
89
- hash_tar_files['test']=[path.replace('\n','') for path in f]
90
-
91
- with open(tars_dev,'r') as f:
92
- hash_tar_files['dev']=[path.replace('\n','') for path in f]
93
-
94
- hash_meta_paths={"train":metadata_train,"test":metadata_test,"dev":metadata_dev}
95
- audio_paths = dl_manager.download(hash_tar_files)
96
-
97
- splits=["train","dev","test"]
98
- local_extracted_audio_paths = (
99
- dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
100
- {
101
- split:[None] * len(audio_paths[split]) for split in splits
102
- }
103
- )
104
-
105
- return [
106
- datasets.SplitGenerator(
107
- name=datasets.Split.TRAIN,
108
- gen_kwargs={
109
- "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
110
- "local_extracted_archives_paths": local_extracted_audio_paths["train"],
111
- "metadata_paths": hash_meta_paths["train"],
112
- }
113
- ),
114
- datasets.SplitGenerator(
115
- name=datasets.Split.VALIDATION,
116
- gen_kwargs={
117
- "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["dev"]],
118
- "local_extracted_archives_paths": local_extracted_audio_paths["dev"],
119
- "metadata_paths": hash_meta_paths["dev"],
120
- }
121
- ),
122
- datasets.SplitGenerator(
123
- name=datasets.Split.TEST,
124
- gen_kwargs={
125
- "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
126
- "local_extracted_archives_paths": local_extracted_audio_paths["test"],
127
- "metadata_paths": hash_meta_paths["test"],
128
- }
129
- ),
130
- ]
131
-
132
- def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
133
-
134
- features = ["normalized_text","gender","split","relative_path"]
135
-
136
- with open(metadata_paths) as f:
137
- metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}
138
-
139
- for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
140
- for audio_filename, audio_file in audio_archive:
141
- audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
142
- path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
143
- yield audio_id, {
144
- "audio_id": audio_id,
145
- **{feature: metadata[audio_id][feature] for feature in features},
146
- "audio": {"path": path, "bytes": audio_file.read()},
147
- }