Datasets:
cartesinus
commited on
Commit
·
0cc561c
1
Parent(s):
4a69685
release for of en2pl with massive filtering and en2es without massive filtering
Browse files- README.md +98 -0
- iva_mt_wslot-exp.py +141 -0
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: id
|
5 |
+
dtype: string
|
6 |
+
- name: locale
|
7 |
+
dtype: string
|
8 |
+
- name: origin
|
9 |
+
dtype: string
|
10 |
+
- name: partition
|
11 |
+
dtype: string
|
12 |
+
- name: translation_utt
|
13 |
+
dtype:
|
14 |
+
translation:
|
15 |
+
languages:
|
16 |
+
- en
|
17 |
+
- pl
|
18 |
+
- name: translation_xml
|
19 |
+
dtype:
|
20 |
+
translation:
|
21 |
+
languages:
|
22 |
+
- en
|
23 |
+
- pl
|
24 |
+
- name: src_bio
|
25 |
+
dtype: string
|
26 |
+
- name: tgt_bio
|
27 |
+
dtype: string
|
28 |
+
task_categories:
|
29 |
+
- translation
|
30 |
+
language:
|
31 |
+
- en
|
32 |
+
- pl
|
33 |
+
- de
|
34 |
+
- es
|
35 |
+
- sv
|
36 |
+
tags:
|
37 |
+
- machine translation
|
38 |
+
- nlu
|
39 |
+
- natural-language-understanding
|
40 |
+
- virtual assistant
|
41 |
+
pretty_name: Machine translation for NLU with slot transfer
|
42 |
+
size_categories:
|
43 |
+
- 10K<n<100K
|
44 |
+
license: cc-by-4.0
|
45 |
+
---
|
46 |
+
# Machine translation dataset for NLU (Virual Assistant) with slot transfer between languages
|
47 |
+
## Dataset Summary
|
48 |
+
|
49 |
+
Disclaimer: This is for research purposes only. Please have a look at the license section below. Some of the datasets used to construct IVA_MT have an unknown license.
|
50 |
+
|
51 |
+
IVA_MT is a machine translation dataset that can be used to train, adapt and evaluate MT models used in Virtual Assistant NLU context (e.g. to translate trainig corpus of NLU).
|
52 |
+
|
53 |
+
## Dataset Composition
|
54 |
+
|
55 |
+
### en-pl
|
56 |
+
|
57 |
+
| Corpus | Train | Dev | Test |
|
58 |
+
|----------------------------------------------------------------------|--------|-------|-------|
|
59 |
+
| [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 11514 | 2033 | 2974 |
|
60 |
+
| [Leyzer 0.2.0](https://github.com/cartesinus/leyzer/tree/0.2.0) | 3974 | 701 | 1380 |
|
61 |
+
| [OpenSubtitles from OPUS](https://opus.nlpl.eu/OpenSubtitles-v1.php) | 2329 | 411 | 500 |
|
62 |
+
| [KDE from OPUS](https://opus.nlpl.eu/KDE4.php) | 1154 | 241 | 241 |
|
63 |
+
| [CCMatrix from Opus](https://opus.nlpl.eu/CCMatrix.php) | 1096 | 232 | 237 |
|
64 |
+
| [Ubuntu from OPUS](https://opus.nlpl.eu/Ubuntu.php) | 281 | 60 | 59 |
|
65 |
+
| [Gnome from OPUS](https://opus.nlpl.eu/GNOME.php) | 14 | 3 | 3 |
|
66 |
+
| *total* | 20362 | 3681 | 5394 |
|
67 |
+
|
68 |
+
### en-de
|
69 |
+
|
70 |
+
| Corpus | Train | Dev | Test |
|
71 |
+
|----------------------------------------------------------------------|--------|-------|-------|
|
72 |
+
| [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 7536 | 1346 | 1955 |
|
73 |
+
|
74 |
+
### en-es
|
75 |
+
|
76 |
+
| Corpus | Train | Dev | Test |
|
77 |
+
|----------------------------------------------------------------------|--------|-------|-------|
|
78 |
+
| [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 8415 | 1526 | 2202 |
|
79 |
+
|
80 |
+
### en-sv
|
81 |
+
|
82 |
+
| Corpus | Train | Dev | Test |
|
83 |
+
|----------------------------------------------------------------------|--------|-------|-------|
|
84 |
+
| [Massive 1.1](https://huggingface.co/datasets/AmazonScience/massive) | 7540 | 1360 | 1921 |
|
85 |
+
|
86 |
+
|
87 |
+
## Tools
|
88 |
+
Scripts used to generate this dataset can be found on [github](https://github.com/cartesinus/iva_mt).
|
89 |
+
|
90 |
+
## License
|
91 |
+
This is a composition of 7 datasets, and the license is as defined in original release:
|
92 |
+
- MASSIVE: [CC-BY 4.0](https://huggingface.co/datasets/AmazonScience/massive/blob/main/LICENSE)
|
93 |
+
- Leyzer: [CC BY-NC 4.0](https://github.com/cartesinus/leyzer/blob/master/LICENSE)
|
94 |
+
- OpenSubtitles: unknown
|
95 |
+
- KDE: [GNU Public License](https://l10n.kde.org/about.php)
|
96 |
+
- CCMatrix: no license given, therefore assuming it is LASER project license [BSD](https://github.com/facebookresearch/LASER/blob/main/LICENSE)
|
97 |
+
- Ubuntu: [GNU Public License](https://help.launchpad.net/Legal)
|
98 |
+
- Gnome: unknown
|
iva_mt_wslot-exp.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
"""IVA_MT_WSLOT"""
|
3 |
+
|
4 |
+
|
5 |
+
import datasets
|
6 |
+
import json
|
7 |
+
|
8 |
+
|
9 |
+
_DESCRIPTION = """\
|
10 |
+
"""
|
11 |
+
|
12 |
+
_URL = "https://github.com/cartesinus/iva_mt/raw/main/release/0.2/iva_mt_wslot-dataset-0.2.1.tar.gz"
|
13 |
+
|
14 |
+
_LANGUAGE_PAIRS = ["en-pl", "en-de", "en-es", "en-sv"]
|
15 |
+
|
16 |
+
class IVA_MTConfig(datasets.BuilderConfig):
|
17 |
+
"""BuilderConfig for IVA_MT"""
|
18 |
+
|
19 |
+
def __init__(self, language_pair, **kwargs):
|
20 |
+
super().__init__(**kwargs)
|
21 |
+
"""
|
22 |
+
|
23 |
+
Args:
|
24 |
+
language_pair: language pair, you want to load
|
25 |
+
**kwargs: keyword arguments forwarded to super.
|
26 |
+
"""
|
27 |
+
self.language_pair = language_pair
|
28 |
+
|
29 |
+
|
30 |
+
class IVA_MT(datasets.GeneratorBasedBuilder):
|
31 |
+
"""OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side."""
|
32 |
+
|
33 |
+
VERSION = datasets.Version("0.2.1")
|
34 |
+
|
35 |
+
BUILDER_CONFIG_CLASS = IVA_MTConfig
|
36 |
+
BUILDER_CONFIGS = [
|
37 |
+
IVA_MTConfig(name=pair, description=_DESCRIPTION, language_pair=pair)
|
38 |
+
for pair in _LANGUAGE_PAIRS
|
39 |
+
]
|
40 |
+
|
41 |
+
def _info(self):
|
42 |
+
src_tag, tgt_tag = self.config.language_pair.split("-")
|
43 |
+
return datasets.DatasetInfo(
|
44 |
+
features=datasets.Features(
|
45 |
+
{
|
46 |
+
"id": datasets.Value("int64"),
|
47 |
+
"locale": datasets.Value("string"),
|
48 |
+
"origin": datasets.Value("string"),
|
49 |
+
"partition": datasets.Value("string"),
|
50 |
+
"translation_utt": datasets.features.Translation(languages=(src_tag, tgt_tag)),
|
51 |
+
"translation_xml": datasets.features.Translation(languages=(src_tag, tgt_tag)),
|
52 |
+
"src_bio": datasets.Value("string"),
|
53 |
+
"tgt_bio": datasets.Value("string")
|
54 |
+
}
|
55 |
+
),
|
56 |
+
supervised_keys=(src_tag, tgt_tag),
|
57 |
+
)
|
58 |
+
|
59 |
+
def _split_generators(self, dl_manager):
|
60 |
+
|
61 |
+
lang_pair = self.config.language_pair
|
62 |
+
src_tag, tgt_tag = lang_pair.split("-")
|
63 |
+
|
64 |
+
archive = dl_manager.download(_URL)
|
65 |
+
|
66 |
+
data_dir = "/".join(["iva_mt_wslot-dataset", "0.2.1", lang_pair])
|
67 |
+
output = []
|
68 |
+
|
69 |
+
test = datasets.SplitGenerator(
|
70 |
+
name=datasets.Split.TEST,
|
71 |
+
# These kwargs will be passed to _generate_examples
|
72 |
+
gen_kwargs={
|
73 |
+
"filepath": f"{data_dir}/iva_mt_wslot-{lang_pair}-test.jsonl",
|
74 |
+
"files": dl_manager.iter_archive(archive),
|
75 |
+
"split": "test",
|
76 |
+
},
|
77 |
+
)
|
78 |
+
|
79 |
+
output.append(test)
|
80 |
+
|
81 |
+
train = datasets.SplitGenerator(
|
82 |
+
name=datasets.Split.TRAIN,
|
83 |
+
gen_kwargs={
|
84 |
+
"filepath": f"{data_dir}/iva_mt_wslot-{lang_pair}-train.jsonl",
|
85 |
+
"files": dl_manager.iter_archive(archive),
|
86 |
+
"split": "train",
|
87 |
+
},
|
88 |
+
)
|
89 |
+
|
90 |
+
output.append(train)
|
91 |
+
|
92 |
+
valid = datasets.SplitGenerator(
|
93 |
+
name=datasets.Split.VALIDATION,
|
94 |
+
# These kwargs will be passed to _generate_examples
|
95 |
+
gen_kwargs={
|
96 |
+
"filepath": f"{data_dir}/iva_mt_wslot-{lang_pair}-valid.jsonl",
|
97 |
+
"files": dl_manager.iter_archive(archive),
|
98 |
+
"split": "valid",
|
99 |
+
},
|
100 |
+
)
|
101 |
+
|
102 |
+
output.append(valid)
|
103 |
+
|
104 |
+
return output
|
105 |
+
|
106 |
+
def _generate_examples(self, filepath, files, split):
|
107 |
+
"""Yields examples."""
|
108 |
+
src_tag, tgt_tag = self.config.language_pair.split("-")
|
109 |
+
key_ = 0
|
110 |
+
lang = _LANGUAGE_PAIRS.copy()
|
111 |
+
|
112 |
+
for path, f in files:
|
113 |
+
l = path.split("/")[-1].split("-")[1].replace('2', '-')
|
114 |
+
|
115 |
+
if l != self.config.language_pair:
|
116 |
+
continue
|
117 |
+
|
118 |
+
# Read the file
|
119 |
+
lines = f.read().decode(encoding="utf-8").split("\n")
|
120 |
+
|
121 |
+
for line in lines:
|
122 |
+
if not line:
|
123 |
+
continue
|
124 |
+
|
125 |
+
data = json.loads(line)
|
126 |
+
|
127 |
+
if data["partition"] != split:
|
128 |
+
continue
|
129 |
+
|
130 |
+
yield key_, {
|
131 |
+
"id": data["id"],
|
132 |
+
"locale": data["locale"],
|
133 |
+
"origin": data["origin"],
|
134 |
+
"partition": data["partition"],
|
135 |
+
"translation_utt": {src_tag: str(data['src_utt']), tgt_tag: str(data['tgt_utt'])},
|
136 |
+
"translation_xml": {src_tag: str(data['src_xml']), tgt_tag: str(data['tgt_xml'])},
|
137 |
+
"src_bio": str(data['src_bio']),
|
138 |
+
"tgt_bio": str(data['tgt_bio'])
|
139 |
+
}
|
140 |
+
|
141 |
+
key_ += 1
|