cassiekang commited on
Commit
c05f6cb
·
verified ·
1 Parent(s): f9a5051

Delete folder

Browse files
Files changed (1) hide show
  1. folder/cub200_dataset.py +0 -79
folder/cub200_dataset.py DELETED
@@ -1,79 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """cub200_dataset.py
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1qC5RnFLP3_9X50ripGf5YtfXnugxBj2m
8
- """
9
-
10
- from PIL import Image
11
- import os
12
- import pandas as pd
13
- from datasets import DatasetDict, DatasetInfo, Features, Value, Sequence, Image, SplitGenerator, GeneratorBasedBuilder, Version
14
-
15
- _CITATION = """\
16
- @techreport{WahCUB_200_2011,
17
- Title = {The Caltech-UCSD Birds-200-2011 Dataset},
18
- Author = {Wah, C. and Branson, S. and Welinder, P. and Perona, P. and Belongie, S.},
19
- Year = {2011},
20
- Institution = {California Institute of Technology},
21
- Number = {CNS-TR-2011-001}
22
- }
23
- """
24
-
25
- _DESCRIPTION = """\
26
- The CUB-200-2011 dataset contains 11,788 photos of 200 bird species. Each photo comes with detailed annotations, including part locations, bounding boxes, and attributes for studying fine-grained visual categorization.
27
- """
28
-
29
- _HOMEPAGE = "http://www.vision.caltech.edu/visipedia/CUB-200-2011.html"
30
-
31
- _DATASET_PATH = "/content/drive/My Drive/cub200/CUB_200_2011"
32
-
33
- class CUB2002011(datasets.GeneratorBasedBuilder):
34
- """CUB-200-2011 dataset for bird species image classification."""
35
-
36
- # Version of the dataset
37
- VERSION = datasets.Version("1.0.0")
38
-
39
- # Define the features of the dataset, including the image and the label
40
- def _info(self):
41
- return datasets.DatasetInfo(
42
- description="CUB-200-2011 is an image dataset with photos of 200 bird species.",
43
- features=datasets.Features({
44
- "image": datasets.Image(),
45
- "label": datasets.ClassLabel(names=[f"species_{i:03d}" for i in range(1, 201)]),
46
- }),
47
- supervised_keys=("image", "label"),
48
- homepage="http://www.vision.caltech.edu/visipedia/CUB-200-2011.html",
49
- citation="""@techreport{WahCUB_200_2011,
50
- Title = {The Caltech-UCSD Birds-200-2011 Dataset},
51
- Author = {Wah, C. and Branson, S. and Welinder, P. and Perona, P. and Belongie, S.},
52
- Year = {2011},
53
- Institution = {California Institute of Technology},
54
- Number = {CNS-TR-2011-001}
55
- }"""
56
- )
57
-
58
- # Specify the dataset splits
59
- def _split_generators(self, dl_manager):
60
- # Assuming the dataset is pre-downloaded
61
- dl_manager = DownloadManager.download_and_extract("https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz")
62
- return [
63
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "split": "train"}),
64
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_dir": data_dir, "split": "test"}),
65
- ]
66
-
67
- # Generate examples from the dataset directory
68
- def _generate_examples(self, data_dir, split):
69
- # Implement logic to iterate over the dataset and yield examples
70
- # For simplicity, assuming all images are in the 'images' folder and split is ignored
71
- species_dirs = [p for p in (data_dir / "images").iterdir() if p.is_dir()]
72
- for species_dir in species_dirs:
73
- species_label = species_dir.name
74
- for image_path in species_dir.glob("*.jpg"):
75
- # The key can be whatever unique identifier you choose; here we use the image path
76
- yield image_path.stem, {
77
- "image": str(image_path),
78
- "label": species_label,
79
- }