initial commit
Browse files- README.md +19 -0
- libritts-aligned.py +311 -0
README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: LibriTTS Corpus with Forced Alignments
|
3 |
+
annotations_creators:
|
4 |
+
- crowdsourced
|
5 |
+
language: en
|
6 |
+
tags:
|
7 |
+
- speech
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech-synthesis
|
11 |
+
license:
|
12 |
+
- cc-by-4.0
|
13 |
+
task_categories:
|
14 |
+
- automatic-speech-recognition
|
15 |
+
- speech-synthesis
|
16 |
+
extra_gated_prompt: "When using this dataset to download LibriTTS, you agree to the terms on https://www.openslr.org"
|
17 |
+
---
|
18 |
+
|
19 |
+
# Dataset Card for LibriTTS with Forced Alignments (and Measures)
|
libritts-aligned.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LibriTTS dataset with forced alignments."""
|
2 |
+
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import hashlib
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
from alignments.datasets.libritts import LibrittsDataset
|
12 |
+
from tqdm.contrib.concurrent import process_map
|
13 |
+
from tqdm.auto import tqdm
|
14 |
+
from multiprocessing import cpu_count
|
15 |
+
from phones.convert import Converter
|
16 |
+
import torchaudio
|
17 |
+
import torchaudio.transforms as AT
|
18 |
+
|
19 |
+
logger = datasets.logging.get_logger(__name__)
|
20 |
+
|
21 |
+
_PHONESET = "arpabet"
|
22 |
+
|
23 |
+
_VERBOSE = os.environ.get("METTS_VERBOSE", True)
|
24 |
+
|
25 |
+
_MAX_WORKERS = os.environ.get("METTS_MAX_WORKERS", cpu_count())
|
26 |
+
|
27 |
+
_VERSION = "1.0.0"
|
28 |
+
|
29 |
+
_PATH = os.environ.get("METTS_PATH", os.environ.get("HF_DATASETS_CACHE", None))
|
30 |
+
if _PATH is not None and not os.path.exists(_PATH):
|
31 |
+
os.makedirs(_PATH)
|
32 |
+
|
33 |
+
_NO_MEASURES = os.environ.get("METTS_NO_MEASURES", False)
|
34 |
+
|
35 |
+
_CITATION = """\
|
36 |
+
@article{zen2019libritts,
|
37 |
+
title={LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech},
|
38 |
+
author={Zen, Heiga and Dang, Viet and Clark, Rob and Zhang, Yu and Weiss, Ron J and Jia, Ye and Chen, Zhifeng and Wu, Yonghui},
|
39 |
+
journal={Interspeech},
|
40 |
+
year={2019}
|
41 |
+
}
|
42 |
+
@article{https://doi.org/10.48550/arxiv.2211.16049,
|
43 |
+
author = {Minixhofer, Christoph and Klejch, Ondřej and Bell, Peter},
|
44 |
+
title = {Evaluating and reducing the distance between synthetic and real speech distributions},
|
45 |
+
year = {2022}
|
46 |
+
}
|
47 |
+
"""
|
48 |
+
|
49 |
+
_DESCRIPTION = """\
|
50 |
+
Dataset used for loading TTS spectrograms and waveform audio with alignments and a number of configurable "measures", which are extracted from the raw audio.
|
51 |
+
"""
|
52 |
+
|
53 |
+
_URL = "https://www.openslr.org/resources/60/"
|
54 |
+
_URLS = {
|
55 |
+
"dev-clean": _URL + "dev-clean.tar.gz",
|
56 |
+
"dev-other": _URL + "dev-other.tar.gz",
|
57 |
+
"test-clean": _URL + "test-clean.tar.gz",
|
58 |
+
"test-other": _URL + "test-other.tar.gz",
|
59 |
+
"train-clean-100": _URL + "train-clean-100.tar.gz",
|
60 |
+
"train-clean-360": _URL + "train-clean-360.tar.gz",
|
61 |
+
"train-other-500": _URL + "train-other-500.tar.gz",
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
class MeTTSConfig(datasets.BuilderConfig):
|
66 |
+
"""BuilderConfig for MeTTS."""
|
67 |
+
|
68 |
+
def __init__(self, sampling_rate=22050, hop_length=256, win_length=1024, **kwargs):
|
69 |
+
"""BuilderConfig for MeTTS.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
**kwargs: keyword arguments forwarded to super.
|
73 |
+
"""
|
74 |
+
super(MeTTSConfig, self).__init__(**kwargs)
|
75 |
+
|
76 |
+
self.sampling_rate = sampling_rate
|
77 |
+
self.hop_length = hop_length
|
78 |
+
self.win_length = win_length
|
79 |
+
|
80 |
+
if _PATH is None:
|
81 |
+
raise ValueError("Please set the environment variable METTS_PATH to point to the MeTTS dataset directory.")
|
82 |
+
elif _PATH == os.environ.get("HF_DATASETS_CACHE", None):
|
83 |
+
logger.warning("Please set the environment variable METTS_PATH to point to the MeTTS dataset directory. Using HF_DATASETS_CACHE as a fallback.")
|
84 |
+
|
85 |
+
class MeTTS(datasets.GeneratorBasedBuilder):
|
86 |
+
"""MeTTS dataset."""
|
87 |
+
|
88 |
+
BUILDER_CONFIGS = [
|
89 |
+
MeTTSConfig(
|
90 |
+
name="libritts",
|
91 |
+
version=datasets.Version(_VERSION, ""),
|
92 |
+
),
|
93 |
+
]
|
94 |
+
|
95 |
+
def _info(self):
|
96 |
+
features = {
|
97 |
+
"id": datasets.Value("string"),
|
98 |
+
"speaker": datasets.Value("string"),
|
99 |
+
"text": datasets.Value("string"),
|
100 |
+
"start": datasets.Value("float32"),
|
101 |
+
"end": datasets.Value("float32"),
|
102 |
+
# phone features
|
103 |
+
"phones": datasets.Sequence(datasets.Value("string")),
|
104 |
+
"phone_durations": datasets.Sequence(datasets.Value("int32")),
|
105 |
+
# audio feature
|
106 |
+
"audio": datasets.Value("string") # datasets.Audio(sampling_rate=self.config.sampling_rate),
|
107 |
+
}
|
108 |
+
|
109 |
+
return datasets.DatasetInfo(
|
110 |
+
description=_DESCRIPTION,
|
111 |
+
features=datasets.Features(features),
|
112 |
+
supervised_keys=None,
|
113 |
+
homepage="https://github.com/MiniXC/MeTTS",
|
114 |
+
citation=_CITATION,
|
115 |
+
task_templates=None,
|
116 |
+
)
|
117 |
+
|
118 |
+
def _split_generators(self, dl_manager):
|
119 |
+
ds_dict = {}
|
120 |
+
for name, url in _URLS.items():
|
121 |
+
ds_dict[name] = self._create_alignments_ds(name, url)
|
122 |
+
splits = [
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=key.replace("-", "."),
|
125 |
+
gen_kwargs={"ds": self._create_data(value)}
|
126 |
+
)
|
127 |
+
for key, value in ds_dict.items()
|
128 |
+
]
|
129 |
+
# dataframe with all data
|
130 |
+
data_train = self._create_data([ds_dict["train-clean-100"], ds_dict["train-clean-360"], ds_dict["train-other-500"]])
|
131 |
+
data_dev = self._create_data([ds_dict["dev-clean"], ds_dict["dev-other"]])
|
132 |
+
data_test = self._create_data([ds_dict["test-clean"], ds_dict["test-other"]])
|
133 |
+
data_all = pd.concat([data_train, data_dev, data_test])
|
134 |
+
splits += [
|
135 |
+
datasets.SplitGenerator(
|
136 |
+
name="train.all",
|
137 |
+
gen_kwargs={
|
138 |
+
"ds": data_all,
|
139 |
+
}
|
140 |
+
),
|
141 |
+
datasets.SplitGenerator(
|
142 |
+
name="dev.all",
|
143 |
+
gen_kwargs={
|
144 |
+
"ds": data_dev,
|
145 |
+
}
|
146 |
+
),
|
147 |
+
datasets.SplitGenerator(
|
148 |
+
name="test.all",
|
149 |
+
gen_kwargs={
|
150 |
+
"ds": data_test,
|
151 |
+
}
|
152 |
+
),
|
153 |
+
]
|
154 |
+
# move last row for each speaker from data_all to dev dataframe
|
155 |
+
data_dev = data_all.copy()
|
156 |
+
data_dev = data_dev.sort_values(by=["speaker", "audio"])
|
157 |
+
data_dev = data_dev.groupby("speaker").tail(1)
|
158 |
+
data_dev = data_dev.reset_index()
|
159 |
+
# remove last row for each speaker from data_all
|
160 |
+
data_all = data_all[~data_all["audio"].isin(data_dev["audio"])]
|
161 |
+
splits += [
|
162 |
+
datasets.SplitGenerator(
|
163 |
+
name="train",
|
164 |
+
gen_kwargs={
|
165 |
+
"ds": data_all,
|
166 |
+
}
|
167 |
+
),
|
168 |
+
datasets.SplitGenerator(
|
169 |
+
name="dev",
|
170 |
+
gen_kwargs={
|
171 |
+
"ds": data_dev,
|
172 |
+
}
|
173 |
+
),
|
174 |
+
]
|
175 |
+
self.alignments_ds = None
|
176 |
+
self.data = None
|
177 |
+
return splits
|
178 |
+
|
179 |
+
def _create_alignments_ds(self, name, url):
|
180 |
+
self.empty_textgrids = 0
|
181 |
+
ds_hash = hashlib.md5(os.path.join(_PATH, f"{name}-alignments").encode()).hexdigest()
|
182 |
+
pkl_path = os.path.join(_PATH, f"{ds_hash}.pkl")
|
183 |
+
if os.path.exists(pkl_path):
|
184 |
+
ds = pickle.load(open(pkl_path, "rb"))
|
185 |
+
else:
|
186 |
+
tgt_dir = os.path.join(_PATH, f"{name}-alignments")
|
187 |
+
src_dir = os.path.join(_PATH, f"{name}-data")
|
188 |
+
if os.path.exists(tgt_dir):
|
189 |
+
src_dir = None
|
190 |
+
url = None
|
191 |
+
if os.path.exists(src_dir):
|
192 |
+
url = None
|
193 |
+
ds = LibrittsDataset(
|
194 |
+
target_directory=tgt_dir,
|
195 |
+
source_directory=src_dir,
|
196 |
+
source_url=url,
|
197 |
+
verbose=_VERBOSE,
|
198 |
+
tmp_directory=os.path.join(_PATH, f"{name}-tmp"),
|
199 |
+
chunk_size=1000,
|
200 |
+
)
|
201 |
+
pickle.dump(ds, open(pkl_path, "wb"))
|
202 |
+
return ds, ds_hash
|
203 |
+
|
204 |
+
def _create_data(self, data):
|
205 |
+
entries = []
|
206 |
+
self.phone_cache = {}
|
207 |
+
self.phone_converter = Converter()
|
208 |
+
if not isinstance(data, list):
|
209 |
+
data = [data]
|
210 |
+
hashes = [ds_hash for ds, ds_hash in data]
|
211 |
+
ds = [ds for ds, ds_hash in data]
|
212 |
+
self.ds = ds
|
213 |
+
del data
|
214 |
+
for i, ds in enumerate(ds):
|
215 |
+
if os.path.exists(os.path.join(_PATH, f"{hashes[i]}-entries.pkl")):
|
216 |
+
add_entries = pickle.load(open(os.path.join(_PATH, f"{hashes[i]}-entries.pkl"), "rb"))
|
217 |
+
else:
|
218 |
+
add_entries = [
|
219 |
+
entry
|
220 |
+
for entry in process_map(
|
221 |
+
self._create_entry,
|
222 |
+
zip([i] * len(ds), np.arange(len(ds))),
|
223 |
+
chunksize=10_000,
|
224 |
+
max_workers=_MAX_WORKERS,
|
225 |
+
desc=f"processing dataset {hashes[i]}",
|
226 |
+
tqdm_class=tqdm,
|
227 |
+
)
|
228 |
+
if entry is not None
|
229 |
+
]
|
230 |
+
pickle.dump(add_entries, open(os.path.join(_PATH, f"{hashes[i]}-entries.pkl"), "wb"))
|
231 |
+
entries += add_entries
|
232 |
+
if self.empty_textgrids > 0:
|
233 |
+
logger.warning(f"Found {self.empty_textgrids} empty textgrids")
|
234 |
+
return pd.DataFrame(
|
235 |
+
entries,
|
236 |
+
columns=[
|
237 |
+
"phones",
|
238 |
+
"duration",
|
239 |
+
"start",
|
240 |
+
"end",
|
241 |
+
"audio",
|
242 |
+
"speaker",
|
243 |
+
"text",
|
244 |
+
"basename",
|
245 |
+
],
|
246 |
+
)
|
247 |
+
del self.ds, self.phone_cache, self.phone_converter
|
248 |
+
|
249 |
+
def _create_entry(self, dsi_idx):
|
250 |
+
dsi, idx = dsi_idx
|
251 |
+
item = self.ds[dsi][idx]
|
252 |
+
start, end = item["phones"][0][0], item["phones"][-1][1]
|
253 |
+
|
254 |
+
phones = []
|
255 |
+
durations = []
|
256 |
+
|
257 |
+
for i, p in enumerate(item["phones"]):
|
258 |
+
s, e, phone = p
|
259 |
+
phone.replace("ˌ", "")
|
260 |
+
r_phone = phone.replace("0", "").replace("1", "")
|
261 |
+
if len(r_phone) > 0:
|
262 |
+
phone = r_phone
|
263 |
+
if "[" not in phone:
|
264 |
+
o_phone = phone
|
265 |
+
if o_phone not in self.phone_cache:
|
266 |
+
phone = self.phone_converter(
|
267 |
+
phone, _PHONESET, lang=None
|
268 |
+
)[0]
|
269 |
+
self.phone_cache[o_phone] = phone
|
270 |
+
phone = self.phone_cache[o_phone]
|
271 |
+
phones.append(phone)
|
272 |
+
durations.append(
|
273 |
+
int(
|
274 |
+
np.round(e * self.config.sampling_rate / self.config.hop_length)
|
275 |
+
- np.round(s * self.config.sampling_rate / self.config.hop_length)
|
276 |
+
)
|
277 |
+
)
|
278 |
+
|
279 |
+
if start >= end:
|
280 |
+
self.empty_textgrids += 1
|
281 |
+
return None
|
282 |
+
|
283 |
+
return (
|
284 |
+
phones,
|
285 |
+
durations,
|
286 |
+
start,
|
287 |
+
end,
|
288 |
+
item["wav"],
|
289 |
+
str(item["speaker"]).split("/")[-1],
|
290 |
+
item["transcript"],
|
291 |
+
Path(item["wav"]).name,
|
292 |
+
)
|
293 |
+
|
294 |
+
def _generate_examples(self, ds):
|
295 |
+
j = 0
|
296 |
+
for i, row in ds.iterrows():
|
297 |
+
# 10kB is the minimum size of a wav file for our purposes
|
298 |
+
if Path(row["audio"]).stat().st_size >= 10_000:
|
299 |
+
if len(row["phones"]) < 384:
|
300 |
+
result = {
|
301 |
+
"id": row["basename"],
|
302 |
+
"speaker": row["speaker"],
|
303 |
+
"text": row["text"],
|
304 |
+
"start": row["start"],
|
305 |
+
"end": row["end"],
|
306 |
+
"phones": row["phones"],
|
307 |
+
"phone_durations": row["duration"],
|
308 |
+
"audio": str(row["audio"]),
|
309 |
+
}
|
310 |
+
yield j, result
|
311 |
+
j += 1
|