"""LibriTTS dataset with forced alignments.""" import os from pathlib import Path import hashlib import pickle import datasets import pandas as pd import numpy as np from alignments.datasets.libritts import LibrittsDataset from tqdm.contrib.concurrent import process_map from tqdm.auto import tqdm from multiprocessing import cpu_count from phones.convert import Converter import torchaudio import torchaudio.transforms as AT logger = datasets.logging.get_logger(__name__) _PHONESET = "arpabet" _VERBOSE = os.environ.get("METTS_VERBOSE", True) _MAX_WORKERS = os.environ.get("METTS_MAX_WORKERS", cpu_count()) _VERSION = "1.0.0" _PATH = os.environ.get("METTS_PATH", os.environ.get("HF_DATASETS_CACHE", None)) if _PATH is not None and not os.path.exists(_PATH): os.makedirs(_PATH) _NO_MEASURES = os.environ.get("METTS_NO_MEASURES", False) _CITATION = """\ @article{zen2019libritts, title={LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech}, author={Zen, Heiga and Dang, Viet and Clark, Rob and Zhang, Yu and Weiss, Ron J and Jia, Ye and Chen, Zhifeng and Wu, Yonghui}, journal={Interspeech}, year={2019} } @article{https://doi.org/10.48550/arxiv.2211.16049, author = {Minixhofer, Christoph and Klejch, Ondřej and Bell, Peter}, title = {Evaluating and reducing the distance between synthetic and real speech distributions}, year = {2022} } """ _DESCRIPTION = """\ Dataset used for loading TTS spectrograms and waveform audio with alignments and a number of configurable "measures", which are extracted from the raw audio. """ _URL = "https://www.openslr.org/resources/60/" _URLS = { "dev-clean": _URL + "dev-clean.tar.gz", "dev-other": _URL + "dev-other.tar.gz", "test-clean": _URL + "test-clean.tar.gz", "test-other": _URL + "test-other.tar.gz", "train-clean-100": _URL + "train-clean-100.tar.gz", "train-clean-360": _URL + "train-clean-360.tar.gz", "train-other-500": _URL + "train-other-500.tar.gz", } class MeTTSConfig(datasets.BuilderConfig): """BuilderConfig for MeTTS.""" def __init__(self, sampling_rate=22050, hop_length=256, win_length=1024, **kwargs): """BuilderConfig for MeTTS. Args: **kwargs: keyword arguments forwarded to super. """ super(MeTTSConfig, self).__init__(**kwargs) self.sampling_rate = sampling_rate self.hop_length = hop_length self.win_length = win_length if _PATH is None: raise ValueError("Please set the environment variable METTS_PATH to point to the MeTTS dataset directory.") elif _PATH == os.environ.get("HF_DATASETS_CACHE", None): logger.warning("Please set the environment variable METTS_PATH to point to the MeTTS dataset directory. Using HF_DATASETS_CACHE as a fallback.") class MeTTS(datasets.GeneratorBasedBuilder): """MeTTS dataset.""" BUILDER_CONFIGS = [ MeTTSConfig( name="libritts", version=datasets.Version(_VERSION, ""), ), ] def _info(self): features = { "id": datasets.Value("string"), "speaker": datasets.Value("string"), "text": datasets.Value("string"), "start": datasets.Value("float32"), "end": datasets.Value("float32"), # phone features "phones": datasets.Sequence(datasets.Value("string")), "phone_durations": datasets.Sequence(datasets.Value("int32")), # audio feature "audio": datasets.Value("string") # datasets.Audio(sampling_rate=self.config.sampling_rate), } return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), supervised_keys=None, homepage="https://github.com/MiniXC/MeTTS", citation=_CITATION, task_templates=None, ) def _split_generators(self, dl_manager): ds_dict = {} for name, url in _URLS.items(): ds_dict[name] = self._create_alignments_ds(name, url) splits = [ datasets.SplitGenerator( name=key.replace("-", "."), gen_kwargs={"ds": self._create_data(value)} ) for key, value in ds_dict.items() ] # dataframe with all data data_train = self._create_data([ds_dict["train-clean-100"], ds_dict["train-clean-360"], ds_dict["train-other-500"]]) data_dev = self._create_data([ds_dict["dev-clean"], ds_dict["dev-other"]]) data_test = self._create_data([ds_dict["test-clean"], ds_dict["test-other"]]) data_all = pd.concat([data_train, data_dev, data_test]) splits += [ datasets.SplitGenerator( name="train.all", gen_kwargs={ "ds": data_all, } ), datasets.SplitGenerator( name="dev.all", gen_kwargs={ "ds": data_dev, } ), datasets.SplitGenerator( name="test.all", gen_kwargs={ "ds": data_test, } ), ] # move last row for each speaker from data_all to dev dataframe data_dev = data_all.copy() data_dev = data_dev.sort_values(by=["speaker", "audio"]) data_dev = data_dev.groupby("speaker").tail(1) data_dev = data_dev.reset_index() # remove last row for each speaker from data_all data_all = data_all[~data_all["audio"].isin(data_dev["audio"])] splits += [ datasets.SplitGenerator( name="train", gen_kwargs={ "ds": data_all, } ), datasets.SplitGenerator( name="dev", gen_kwargs={ "ds": data_dev, } ), ] self.alignments_ds = None self.data = None return splits def _create_alignments_ds(self, name, url): self.empty_textgrids = 0 ds_hash = hashlib.md5(os.path.join(_PATH, f"{name}-alignments").encode()).hexdigest() pkl_path = os.path.join(_PATH, f"{ds_hash}.pkl") if os.path.exists(pkl_path): ds = pickle.load(open(pkl_path, "rb")) else: tgt_dir = os.path.join(_PATH, f"{name}-alignments") src_dir = os.path.join(_PATH, f"{name}-data") if os.path.exists(tgt_dir): src_dir = None url = None if os.path.exists(src_dir): url = None ds = LibrittsDataset( target_directory=tgt_dir, source_directory=src_dir, source_url=url, verbose=_VERBOSE, tmp_directory=os.path.join(_PATH, f"{name}-tmp"), chunk_size=1000, ) pickle.dump(ds, open(pkl_path, "wb")) return ds, ds_hash def _create_data(self, data): entries = [] self.phone_cache = {} self.phone_converter = Converter() if not isinstance(data, list): data = [data] hashes = [ds_hash for ds, ds_hash in data] ds = [ds for ds, ds_hash in data] self.ds = ds del data for i, ds in enumerate(ds): if os.path.exists(os.path.join(_PATH, f"{hashes[i]}-entries.pkl")): add_entries = pickle.load(open(os.path.join(_PATH, f"{hashes[i]}-entries.pkl"), "rb")) else: add_entries = [ entry for entry in process_map( self._create_entry, zip([i] * len(ds), np.arange(len(ds))), chunksize=10_000, max_workers=_MAX_WORKERS, desc=f"processing dataset {hashes[i]}", tqdm_class=tqdm, ) if entry is not None ] pickle.dump(add_entries, open(os.path.join(_PATH, f"{hashes[i]}-entries.pkl"), "wb")) entries += add_entries if self.empty_textgrids > 0: logger.warning(f"Found {self.empty_textgrids} empty textgrids") return pd.DataFrame( entries, columns=[ "phones", "duration", "start", "end", "audio", "speaker", "text", "basename", ], ) del self.ds, self.phone_cache, self.phone_converter def _create_entry(self, dsi_idx): dsi, idx = dsi_idx item = self.ds[dsi][idx] start, end = item["phones"][0][0], item["phones"][-1][1] phones = [] durations = [] for i, p in enumerate(item["phones"]): s, e, phone = p phone.replace("ˌ", "") r_phone = phone.replace("0", "").replace("1", "") if len(r_phone) > 0: phone = r_phone if "[" not in phone: o_phone = phone if o_phone not in self.phone_cache: phone = self.phone_converter( phone, _PHONESET, lang=None )[0] self.phone_cache[o_phone] = phone phone = self.phone_cache[o_phone] phones.append(phone) durations.append( int( np.round(e * self.config.sampling_rate / self.config.hop_length) - np.round(s * self.config.sampling_rate / self.config.hop_length) ) ) if start >= end: self.empty_textgrids += 1 return None return ( phones, durations, start, end, item["wav"], str(item["speaker"]).split("/")[-1], item["transcript"], Path(item["wav"]).name, ) def _generate_examples(self, ds): j = 0 for i, row in ds.iterrows(): # 10kB is the minimum size of a wav file for our purposes if Path(row["audio"]).stat().st_size >= 10_000: if len(row["phones"]) < 384: result = { "id": row["basename"], "speaker": row["speaker"], "text": row["text"], "start": row["start"], "end": row["end"], "phones": row["phones"], "phone_durations": row["duration"], "audio": str(row["audio"]), } yield j, result j += 1