Create libritts-phones-and-mel.py
Browse files- libritts-phones-and-mel.py +159 -0
libritts-phones-and-mel.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LibriSpeech dataset with phone alignments, prosody and mel spectrograms."""
|
2 |
+
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import hashlib
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
import pandas as pd
|
10 |
+
import numpy as np
|
11 |
+
from tqdm.contrib.concurrent import process_map
|
12 |
+
from tqdm.auto import tqdm
|
13 |
+
from multiprocessing import cpu_count
|
14 |
+
from PIL import Image
|
15 |
+
|
16 |
+
logger = datasets.logging.get_logger(__name__)
|
17 |
+
|
18 |
+
_VERSION = "0.0.1"
|
19 |
+
|
20 |
+
_CITATION = """\
|
21 |
+
@inproceedings{48008,
|
22 |
+
title = {LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech},
|
23 |
+
author = {Heiga Zen and Rob Clark and Ron J. Weiss and Viet Dang and Ye Jia and Yonghui Wu and Yu Zhang and Zhifeng Chen},
|
24 |
+
year = {2019},
|
25 |
+
URL = {https://arxiv.org/abs/1904.02882},
|
26 |
+
booktitle = {Interspeech}
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
Dataset containing Mel Spectrograms, Prosody and Phone Alignments for the LibriTTS dataset.
|
32 |
+
"""
|
33 |
+
|
34 |
+
_URLS = {
|
35 |
+
"dev.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_clean.tar.gz",
|
36 |
+
"dev.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_other.tar.gz",
|
37 |
+
"test.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_clean.tar.gz",
|
38 |
+
"test.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_other.tar.gz",
|
39 |
+
"train.clean.100": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_100.tar.gz",
|
40 |
+
"train.clean.360": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_360.tar.gz",
|
41 |
+
"train.other.500": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_other_500.tar.gz",
|
42 |
+
}
|
43 |
+
|
44 |
+
|
45 |
+
class LibriTTSConfig(datasets.BuilderConfig):
|
46 |
+
|
47 |
+
def __init__(self, **kwargs):
|
48 |
+
"""
|
49 |
+
|
50 |
+
Args:
|
51 |
+
**kwargs: keyword arguments forwarded to super.
|
52 |
+
"""
|
53 |
+
super(LibrispeechConfig, self).__init__(**kwargs)
|
54 |
+
|
55 |
+
|
56 |
+
class LibriTTS(datasets.GeneratorBasedBuilder):
|
57 |
+
|
58 |
+
BUILDER_CONFIGS = [
|
59 |
+
LibriTTSConfig(
|
60 |
+
name="libritts",
|
61 |
+
version=datasets.Version(_VERSION, ""),
|
62 |
+
),
|
63 |
+
]
|
64 |
+
|
65 |
+
def _info(self):
|
66 |
+
features = {
|
67 |
+
"id": datasets.Value("string"),
|
68 |
+
"speaker_id": datasets.Value("string"),
|
69 |
+
"chapter_id": datasets.Value("string"),
|
70 |
+
"phones": datasets.Value("string"),
|
71 |
+
"mel": datasets.Value("string"),
|
72 |
+
"prosody": datasets.Value("string"),
|
73 |
+
"speaker_utterance": datasets.Value("string"),
|
74 |
+
"mean_speaker_utterance": datasets.Value("string"),
|
75 |
+
"mean_speaker": datasets.Value("string"),
|
76 |
+
"text": datasets.Value("string"),
|
77 |
+
}
|
78 |
+
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
features=datasets.Features(features),
|
82 |
+
supervised_keys=None,
|
83 |
+
homepage="https://huggingface.co/datasets/cdminix/libritts-phones-and-mel",
|
84 |
+
citation=_CITATION,
|
85 |
+
task_templates=None,
|
86 |
+
)
|
87 |
+
|
88 |
+
def _split_generators(self, dl_manager):
|
89 |
+
splits = [
|
90 |
+
datasets.SplitGenerator(
|
91 |
+
name=key,
|
92 |
+
gen_kwargs={"data_path": dl_manager.download_and_extract(value)},
|
93 |
+
)
|
94 |
+
for key, value in _URLS.items()
|
95 |
+
]
|
96 |
+
|
97 |
+
return splits
|
98 |
+
|
99 |
+
def _df_from_path(self, path):
|
100 |
+
mel_path = Path(path)
|
101 |
+
prosody_path = Path(str(mel_path).replace("_mel.png", "_prosody.png"))
|
102 |
+
phones_path = Path(str(mel_path).replace("_mel.png", "_phones.npy"))
|
103 |
+
overall_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.npy"))
|
104 |
+
temporal_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.png"))
|
105 |
+
mean_speaker_path = mel_path.parent.parent / "mean_speaker.npy"
|
106 |
+
text = Path(str(mel_path).replace("_mel.png", "_text.txt")).read_text().lower()
|
107 |
+
|
108 |
+
speaker_id = mel_path.parent.parent.name
|
109 |
+
chapter_id = mel_path.parent.name
|
110 |
+
_id = str(mel_path).replace("_mel.png", "")
|
111 |
+
|
112 |
+
return {
|
113 |
+
"id": _id,
|
114 |
+
"speaker_id": speaker_id,
|
115 |
+
"chapter_id": chapter_id,
|
116 |
+
"phones": phones_path,
|
117 |
+
"mel": mel_path,
|
118 |
+
"prosody": prosody_path,
|
119 |
+
"speaker_utterance": temporal_speaker_path,
|
120 |
+
"mean_speaker_utterance": overall_speaker_path,
|
121 |
+
"mean_speaker": mean_speaker_path,
|
122 |
+
"text": text,
|
123 |
+
}
|
124 |
+
|
125 |
+
def _df_from_paths_mp(self, paths):
|
126 |
+
return pd.DataFrame(
|
127 |
+
process_map(
|
128 |
+
self._df_from_path,
|
129 |
+
paths,
|
130 |
+
desc="Reading files",
|
131 |
+
max_workers=cpu_count(),
|
132 |
+
chunksize=100,
|
133 |
+
)
|
134 |
+
)
|
135 |
+
|
136 |
+
def _create_mean_speaker(self, df):
|
137 |
+
# Create mean speaker for each speaker
|
138 |
+
for _, speaker_df in df.groupby("speaker_id"):
|
139 |
+
if not Path(speaker_df["mean_speaker"].iloc[0]).exists():
|
140 |
+
mean_speaker = np.mean(
|
141 |
+
np.array(
|
142 |
+
[np.load(path) for path in speaker_df["mean_speaker_utterance"]]
|
143 |
+
),
|
144 |
+
axis=0,
|
145 |
+
)
|
146 |
+
np.save(speaker_df["mean_speaker"].iloc[0], mean_speaker)
|
147 |
+
|
148 |
+
def _generate_examples(self, data_path):
|
149 |
+
"""Generate examples."""
|
150 |
+
logger.info("⏳ Generating examples from = %s", data_path)
|
151 |
+
|
152 |
+
paths = sorted(list(Path(data_path).rglob("*_mel.png")))
|
153 |
+
|
154 |
+
df = self._df_from_paths_mp(paths)
|
155 |
+
|
156 |
+
self._create_mean_speaker(df)
|
157 |
+
|
158 |
+
for i, row in tqdm(df.iterrows(), desc="Generating examples"):
|
159 |
+
yield row["id"], row.to_dict()
|