"""LibriTTS dataset with phone alignments, prosody and mel spectrograms.""" import os from pathlib import Path import hashlib import pickle import datasets import pandas as pd import numpy as np from tqdm.contrib.concurrent import process_map from tqdm.auto import tqdm from multiprocessing import cpu_count from PIL import Image logger = datasets.logging.get_logger(__name__) _VERSION = "0.0.1" _CITATION = """\ @inproceedings{48008, title = {LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech}, author = {Heiga Zen and Rob Clark and Ron J. Weiss and Viet Dang and Ye Jia and Yonghui Wu and Yu Zhang and Zhifeng Chen}, year = {2019}, URL = {https://arxiv.org/abs/1904.02882}, booktitle = {Interspeech} } """ _DESCRIPTION = """\ Dataset containing Mel Spectrograms, Prosody and Phone Alignments for the LibriTTS dataset. """ _URLS = { "dev.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_clean.tar.gz", "dev.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/dev_other.tar.gz", "test.clean": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_clean.tar.gz", "test.other": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/test_other.tar.gz", "train.clean.100": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_100.tar.gz", "train.clean.360": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_clean_360.tar.gz", "train.other.500": "https://huggingface.co/datasets/cdminix/libritts-phones-and-mel/resolve/main/data/train_other_500.tar.gz", } class LibriTTSConfig(datasets.BuilderConfig): def __init__(self, **kwargs): """ Args: **kwargs: keyword arguments forwarded to super. """ super(LibriTTSConfig, self).__init__(**kwargs) class LibriTTS(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ LibriTTSConfig( name="libritts", version=datasets.Version(_VERSION, ""), ), ] def _info(self): features = { "id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "chapter_id": datasets.Value("string"), "phones": datasets.Value("string"), "mel": datasets.Value("string"), "prosody": datasets.Value("string"), "speaker_utterance": datasets.Value("string"), "mean_speaker_utterance": datasets.Value("string"), "mean_speaker": datasets.Value("string"), "text": datasets.Value("string"), } return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), supervised_keys=None, homepage="https://huggingface.co/datasets/cdminix/libritts-phones-and-mel", citation=_CITATION, task_templates=None, ) def _split_generators(self, dl_manager): splits = [ datasets.SplitGenerator( name=key, gen_kwargs={"data_path": dl_manager.download_and_extract(value)}, ) for key, value in _URLS.items() ] return splits def _df_from_path(self, path): mel_path = Path(path) prosody_path = Path(str(mel_path).replace("_mel.png", "_prosody.png")) phones_path = Path(str(mel_path).replace("_mel.png", "_phones.npy")) overall_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.npy")) temporal_speaker_path = Path(str(mel_path).replace("_mel.png", "_speaker.png")) mean_speaker_path = mel_path.parent.parent / "mean_speaker.npy" text = Path(str(mel_path).replace("_mel.png", "_text.txt")).read_text().lower() speaker_id = mel_path.parent.parent.name chapter_id = mel_path.parent.name _id = str(mel_path).replace("_mel.png", "") return { "id": _id, "speaker_id": speaker_id, "chapter_id": chapter_id, "phones": phones_path, "mel": mel_path, "prosody": prosody_path, "speaker_utterance": temporal_speaker_path, "mean_speaker_utterance": overall_speaker_path, "mean_speaker": mean_speaker_path, "text": text, } def _df_from_paths_mp(self, paths): return pd.DataFrame( process_map( self._df_from_path, paths, desc="Reading files", max_workers=cpu_count(), chunksize=100, ) ) def _create_mean_speaker(self, df): # Create mean speaker for each speaker for _, speaker_df in df.groupby("speaker_id"): if not Path(speaker_df["mean_speaker"].iloc[0]).exists(): mean_speaker = np.mean( np.array( [np.load(path) for path in speaker_df["mean_speaker_utterance"]] ), axis=0, ) np.save(speaker_df["mean_speaker"].iloc[0], mean_speaker) def _generate_examples(self, data_path): """Generate examples.""" logger.info("⏳ Generating examples from = %s", data_path) paths = sorted(list(Path(data_path).rglob("*_mel.png"))) df = self._df_from_paths_mp(paths) self._create_mean_speaker(df) for i, row in tqdm(df.iterrows(), desc="Generating examples"): yield row["id"], row.to_dict()