File size: 7,196 Bytes
649ef3a 77db046 649ef3a 58ddaaa 77db046 649ef3a 58ddaaa 77db046 649ef3a d1c6bcf 649ef3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
pretty_name: LibriTTS Corpus with Forced Alignments
annotations_creators:
- crowdsourced
language: en
tags:
- speech
- audio
- automatic-speech-recognition
- text-to-speech
license:
- cc-by-4.0
task_categories:
- automatic-speech-recognition
- text-to-speech
extra_gated_prompt: "When using this dataset to download LibriTTS, you agree to the terms on https://www.openslr.org"
---
> This dataset is identical to **[cdminix/libritts-aligned](https://huggingface.co/datasets/cdminix/libritts-aligned)** except it uses the newly released LibriTTS-R corpus. Please cite **[Y. Koizumi, et al., "LibriTTS-R: Restoration of a Large-Scale Multi-Speaker TTS Corpus", Interspeech 2023](https://google.github.io/df-conformer/librittsr/)**
*When using this dataset to download LibriTTS-R, make sure you agree to the terms on https://www.openslr.org*
# Dataset Card for LibriTTS-R with Forced Alignments (and Measures)
This dataset downloads LibriTTS-R and preprocesses it on your machine to create alignments using [montreal forced aligner](https://montreal-forced-aligner.readthedocs.io/en/latest/).
You need to run ``pip install alignments phones`` before using this dataset.
When running this the first time, it can take an hour or two, but subsequent runs will be lightning fast.
## Requirements
- ``pip install alignments phones`` **(required)**
- ``pip install speech-collator`` (optional)
*Note: version >=0.0.15 of alignments is required for this corpus*
## Example Item
```json
{
'id': '100_122655_000073_000002.wav',
'speaker': '100',
'text': 'the day after, diana and mary quitted it for distant b.',
'start': 0.0,
'end': 3.6500000953674316,
'phones': ['[SILENCE]', 'ð', 'ʌ', '[SILENCE]', 'd', 'eɪ', '[SILENCE]', 'æ', 'f', 't', 'ɜ˞', '[COMMA]', 'd', 'aɪ', 'æ', 'n', 'ʌ', '[SILENCE]', 'æ', 'n', 'd', '[SILENCE]', 'm', 'ɛ', 'ɹ', 'i', '[SILENCE]', 'k', 'w', 'ɪ', 't', 'ɪ', 'd', '[SILENCE]', 'ɪ', 't', '[SILENCE]', 'f', 'ɜ˞', '[SILENCE]', 'd', 'ɪ', 's', 't', 'ʌ', 'n', 't', '[SILENCE]', 'b', 'i', '[FULL STOP]'],
'phone_durations': [5, 2, 4, 0, 5, 13, 0, 16, 7, 5, 20, 2, 6, 9, 15, 4, 2, 0, 11, 3, 5, 0, 3, 8, 9, 8, 0, 13, 3, 5, 3, 6, 4, 0, 8, 5, 0, 9, 5, 0, 7, 5, 6, 7, 4, 5, 10, 0, 3, 35, 9],
'audio': '/dev/shm/metts/train-clean-360-alignments/100/100_122655_000073_000002.wav'
}
```
The phones are IPA phones, and the phone durations are in frames (assuming a hop length of 256, sample rate of 22050 and window length of 1024). These attributes can be changed using the ``hop_length``, ``sample_rate`` and ``window_length`` arguments to ``LibriTTSAlign``.
## Data Collator
This dataset comes with a data collator which can be used to create batches of data for training.
It can be installed using ``pip install speech-collator`` ([MiniXC/speech-collator](https://www.github.com/MiniXC/speech-collator)) and can be used as follows:
```python
import json
from datasets import load_dataset
from speech_collator import SpeechCollator
from torch.utils.data import DataLoader
dataset = load_dataset('cdminix/libritts-aligned', split="train")
speaker2ixd = json.load(open("speaker2idx.json"))
phone2ixd = json.load(open("phone2idx.json"))
collator = SpeechCollator(
speaker2ixd=speaker2idx,
phone2ixd=phone2idx ,
)
dataloader = DataLoader(dataset, collate_fn=collator.collate_fn, batch_size=8)
```
You can either download the ``speaker2idx.json`` and ``phone2idx.json`` files from [here](https://huggingface.co/datasets/cdminix/libritts-aligned/tree/main/data) or create them yourself using the following code:
```python
import json
from datasets import load_dataset
from speech_collator import SpeechCollator, create_speaker2idx, create_phone2idx
dataset = load_dataset("cdminix/libritts-aligned", split="train")
# Create speaker2idx and phone2idx
speaker2idx = create_speaker2idx(dataset, unk_idx=0)
phone2idx = create_phone2idx(dataset, unk_idx=0)
# save to json
with open("speaker2idx.json", "w") as f:
json.dump(speaker2idx, f)
with open("phone2idx.json", "w") as f:
json.dump(phone2idx, f)
```
### Measures
When using ``speech-collator`` you can also use the ``measures`` argument to specify which measures to use. The following example extracts Pitch and Energy on the fly.
```python
import json
from torch.utils.data import DataLoader
from datasets import load_dataset
from speech_collator import SpeechCollator, create_speaker2idx, create_phone2idx
from speech_collator.measures import PitchMeasure, EnergyMeasure
dataset = load_dataset("cdminix/libritts-aligned", split="train")
speaker2idx = json.load(open("data/speaker2idx.json"))
phone2idx = json.load(open("data/phone2idx.json"))
# Create SpeechCollator
speech_collator = SpeechCollator(
speaker2idx=speaker2idx,
phone2idx=phone2idx,
measures=[PitchMeasure(), EnergyMeasure()],
return_keys=["measures"]
)
# Create DataLoader
dataloader = DataLoader(
dataset,
batch_size=8,
collate_fn=speech_collator.collate_fn,
)
```
COMING SOON: Detailed documentation on how to use the measures at [MiniXC/speech-collator](https://www.github.com/MiniXC/speech-collator).
## Splits
This dataset has the following splits:
- ``train``: All the training data, except one sample per speaker which is used for validation.
- ``dev``: The validation data, one sample per speaker.
- ``train.clean.100``: Training set derived from the original materials of the train-clean-100 subset of LibriSpeech.
- ``train.clean.360``: Training set derived from the original materials of the train-clean-360 subset of LibriSpeech.
- ``train.other.500``: Training set derived from the original materials of the train-other-500 subset of LibriSpeech.
- ``dev.clean``: Validation set derived from the original materials of the dev-clean subset of LibriSpeech.
- ``dev.other``: Validation set derived from the original materials of the dev-other subset of LibriSpeech.
- ``test.clean``: Test set derived from the original materials of the test-clean subset of LibriSpeech.
- ``test.other``: Test set derived from the original materials of the test-other subset of LibriSpeech.
## Environment Variables
There are a few environment variable which can be set.
- ``LIBRITTS_VERBOSE``: If set, will print out more information about the dataset creation process.
- ``LIBRITTS_MAX_WORKERS``: The number of workers to use when creating the alignments. Defaults to ``cpu_count()``.
- ``LIBRITTS_PATH``: The path to download LibriTTS to. Defaults to the value of ``HF_DATASETS_CACHE``.
# Citation
When using LibriTTS-R please cite the following papers:
- [LibriTTS-R: Restoration of a Large-Scale Multi-Speaker TTS Corpus](https://google.github.io/df-conformer/librittsr/)
- [LibriTTS: A Corpus Derived from LibriSpeech for Text-to-Speech](https://arxiv.org/abs/1904.02882)
- [Montreal Forced Aligner: Trainable text-speech alignment using Kaldi](https://www.researchgate.net/publication/319185277_Montreal_Forced_Aligner_Trainable_Text-Speech_Alignment_Using_Kaldi)
When using the Measures please cite the following paper (ours):
- [Evaluating and reducing the distance between synthetic and real speech distributions](https://arxiv.org/abs/2211.16049) |