File size: 5,485 Bytes
95dbac8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
"""The MGB Challenge Dataset."""
from __future__ import absolute_import, division, print_function
import logging
import datasets
from collections import deque
_CITATION = """\
@inproceedings{bell2015mgb,
title={The MGB challenge: Evaluating multi-genre broadcast media recognition},
author={Bell, Peter and Gales, Mark JF and Hain, Thomas and Kilgour, Jonathan and Lanchantin, Pierre and Liu, Xunying and McParland, Andrew and Renals, Steve and Saz, Oscar and Wester, Mirjam and others},
booktitle={2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)},
pages={687--693},
year={2015},
organization={IEEE}
}
"""
_DESCRIPTION = """\
The first edition of the Multi-Genre Broadcast (MGB-1) Challenge is an evaluation of speech recognition, speaker diarization, and lightly supervised alignment using TV recordings in English.
The speech data is broad and multi-genre, spanning the whole range of TV output, and represents a challenging task for speech technology.
In 2015, the challenge used data from the British Broadcasting Corporation (BBC).
"""
_LM_FILE = "lm.txt"
_TRAINING_FILE = "train.txt"
_DEV_FILE = "dev.txt"
class MGB_1Config(datasets.BuilderConfig):
"""The MGB-1 Dataset."""
def __init__(self, with_dots=False, **kwargs):
"""BuilderConfig for MGB-1.
Args:
**kwargs: keyword arguments forwarded to super.
"""
self.with_dots = with_dots
super(MGB_1Config, self).__init__(**kwargs)
class MGB_1(datasets.GeneratorBasedBuilder):
"""The WNUT 17 Emerging Entities Dataset."""
BUILDER_CONFIG_CLASS = MGB_1Config
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"words": datasets.Sequence(datasets.Value("string")),
"punctuation": datasets.Sequence(datasets.Value("string")),
}
),
supervised_keys=None,
homepage="http://www.mgb-challenge.org/MGB-1.html",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"lm": f"{_URL}{_LM_FILE}",
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split('lm'), gen_kwargs={"filepath": downloaded_files["lm"], "start_index": 0}),
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"], "start_index": 1}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"], "start_index": 1}),
]
def _generate_examples(self, filepath, start_index):
logging.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
current_tokens = deque()
current_labels = deque()
sentence_counter = 0
for row in f:
row = row.rstrip()
if row:
tokens = row.lower().split(" ")
tokens = tokens[start_index:]
punct = [
'<full_stop>',
'<dots>',
'<comma>',
'<exclamation_mark>',
'<question_mark>'
]
if tokens[0] in punct:
# we cannot interpret lines starting with punctuation
continue
prev_tok = None
for i, t in enumerate(tokens):
if t in punct and (i == 0 or prev_tok not in punct):
if not self.config.with_dots and t == '<dots>':
current_labels.append('<full_stop>')
else:
current_labels.append(t)
elif t not in punct:
current_tokens.append(t)
if i == len(tokens) - 1 or tokens[i+1] not in punct:
current_labels.append('<none>')
prev_tok = t
# New sentence
if not current_tokens:
# Consecutive empty lines will cause empty sentences
continue
assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"words": current_tokens,
"punctuation": current_labels,
},
)
sentence_counter += 1
current_tokens = deque()
current_labels = deque()
yield sentence
# Don't forget last sentence in dataset 🧐
if current_tokens:
yield sentence_counter, {
"id": str(sentence_counter),
"words": current_tokens,
"punctuation": current_labels,
} |