# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datasets import pandas as pd _CITATION = """\ TBD """ _DESCRIPTION = """\ TBD """ _HOMEPAGE = "https://cevalbenchmark.com" _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" _URL = r"https://huggingface.co/datasets/ceval/ceval-exam/resolve/main/ceval_data.tar" task_list = [ "computer_network", "operating_system", "computer_architecture", "college_programming", "college_physics", "college_chemistry", "advanced_mathematics", "probability_and_statistics", "discrete_mathematics", "electrical_engineer", "metrology_engineer", "high_school_mathematics", "high_school_physics", "high_school_chemistry", "high_school_biology", "middle_school_mathematics", "middle_school_biology", "middle_school_physics", "middle_school_chemistry", "veterinary_medicine", "college_economics", "business_administration", "marxism", "mao_zedong_thought", "education_science", "teacher_qualification", "high_school_politics", "high_school_geography", "middle_school_politics", "middle_school_geography", "modern_chinese_history", "ideological_and_moral_cultivation", "logic", "law", "chinese_language_and_literature", "art_studies", "professional_tour_guide", "legal_professional", "high_school_chinese", "high_school_history", "middle_school_history", "civil_servant", "sports_science", "plant_protection", "basic_medicine", "clinical_medicine", "urban_and_rural_planner", "accountant", "fire_engineer", "environmental_impact_assessment_engineer", "tax_accountant", "physician", ] class CevalExamConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) class CevalExam(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ CevalExamConfig( name=task_name, ) for task_name in task_list ] def _info(self): features = datasets.Features( { "id":datasets.Value("int32"), "question": datasets.Value("string"), "A": datasets.Value("string"), "B": datasets.Value("string"), "C": datasets.Value("string"), "D": datasets.Value("string"), "answer": datasets.Value("string"), "explanation":datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) task_name = self.config.name return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( data_dir, "data","test", f"{task_name}_test.csv" ), }, ), datasets.SplitGenerator( name=datasets.Split("val"), gen_kwargs={ "filepath": os.path.join( data_dir,'data', "val", f"{task_name}_val.csv" ), }, ), datasets.SplitGenerator( name=datasets.Split("dev"), gen_kwargs={ "filepath": os.path.join( data_dir, "data", "dev", f"{task_name}_dev.csv" ), }, ), ] def _generate_examples(self, filepath): df = pd.read_csv(filepath,encoding="utf-8") for i, instance in enumerate(df.to_dict(orient="records")): if "answer" not in instance.keys(): instance["answer"]="" if "explanation" not in instance.keys(): instance["explanation"]="" yield i, instance